Skip to main content
Log in

Preparation and performance of a perovskite-type tubular membrane for the partial oxidation of methane

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Thin-walled (∼200 μm) tubular membranes intended for the catalytic partial oxidation of natural gas have been manufactured from La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) powders using viscous plastic processing technology. The perovskite-type powders were synthesised using various conventional and novel techniques. The tubes have been characterised using a custom-built gas analysis rig with on-line mass spectrometry.

Porosity levels of the membranes were found to be very low (<0.5%) as calculated using a mass spectrometry leakage test. This was confirmed by microstructural analysis of polished cross-sections using SEM. The spontaneous oxygen flux across the tubular membranes was determined as a function of temperature. Oxygen permeation rates were found to range from 0.1 to 0.3 μmol cm−2s−1 at 1273 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Balachandran, J.T. Dusek, R.L. Mieville, R.B. Poeppel, M.S. Kleefisch, S. Pei, T.P. Kobylinski, C.A. Udovich, and A.C. Bose, Applied Catalysis A: General133, 19 (1995).

    Article  CAS  Google Scholar 

  2. C.-Y. Tsai, A.G. Dixon, Y.H. Ma, W.R. Moser, and M.R. Pascucci, J. Am. Ceram. Soc.81(6), 1437 (1998).

    CAS  Google Scholar 

  3. A. Petric, K. Huang, and F. Tietz, Solid State Ionics135, 719 (2000).

    Article  CAS  Google Scholar 

  4. U. Balachandran, J.T. Dusek, P.S. Maiya, R.L. Mieville, M.S. Kleefisch, C.A. Udovich, and A.C. Bose, in: Role of Ceramics in Advanced Electrochemical Systems (P.N. Kumta, et al., Eds.) 1996.

  5. W. Jin, S. Li, P. Huang, N. Xu, J. Shi, and Y.S. Lin, J. Membrane Science166, 13 (2000).

    Article  CAS  Google Scholar 

  6. S.J. Xu and W.J. Thomson, Ind. Eng. Chem. Res.37, 1290 (1998).

    CAS  Google Scholar 

  7. Y. Zeng, Y.S. Lin, and S.L. Swartz, J. Membrane Science150, 87 (1998).

    Article  CAS  Google Scholar 

  8. J.E. ten Elshof, B.A. van Hassel, and H.J.M. Bouwmeester, Catalysis Today25, 397 (1995).

    Google Scholar 

  9. C.M. Finnerty, R.H. Cunningham, and R.M. Ormerod, Chemical Communications915, (1998).

  10. C.M. Finnerty, R.H. Cunningham, and R.M. Ormerod, Catalysis Letters66, 221 (2000).

    Article  CAS  Google Scholar 

  11. C. Marcilly, P. Courty, and B. Delmon, J. Am. Ceram. Soc.53(1) 56 (1970).

    CAS  Google Scholar 

  12. C.M. Finnerty, N.J. Coe, R.H. Cunningham, and R.M. Ormerod, Catalysis Today46, 137 (1998).

    Article  CAS  Google Scholar 

  13. R.M. Ormerod, Stud. Surf. Sci. Catal.122, 35 (1999).

    CAS  Google Scholar 

  14. D.J. Anderton and F.R. Sale, Powder Metallurgy1, 14 (1979).

    Google Scholar 

  15. R.A. Richardson, R.M. Ormerod and J.W. Cotton,in preparation.

  16. H. Deng, M. Zhou, and B. Abeles, Solid State Ionics74, 75 (1994).

    Article  CAS  Google Scholar 

  17. P.J. Gellings and H.J.M. Bouwmeester, Eds., The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, R.A., Mark Ormerod, R. & Cotton, J.W. Preparation and performance of a perovskite-type tubular membrane for the partial oxidation of methane. Ionics 9, 411–416 (2003). https://doi.org/10.1007/BF02376594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376594

Keywords

Navigation