Skip to main content

Advertisement

Log in

Recycling and reutilization of LiNi0.6Co0.2Mn0.2O2 cathode materials from spent lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the permeation of LIBs into electric vehicles, the recycling of spent LIBs appears inevitable from the perspective of health, economic, and environmental protection. In this work, a facile process was proposed to realize the recycling and reutilization of valuable metals from spent LIBs. By ammonia leaching, co-precipitation, and solid phase reaction, fresh LiNi0.6Co0.2Mn0.2O2 cathode material was regenerated. The results revealed that an increase in the concentration of sulfite and ammonia was beneficial to the dissolution of valuable metals except aluminum. And the dissolution of Mn was mainly dominated by pH value and the concentration of sulfite. The initial specific discharge capacity of the regenerated LiNi0.6Co0.2Mn0.2O2 reaches 178.4 mAh·g−1 at 0.1 C. After 100 cycles, the capacity retains 92.1% at 0.5 C, which shows excellent electrochemical performance. In general, the recycling process may be worth considering for the recycling of spent lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu M, Zhang Z, Xue F et al (2019) A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid. Sep Purif Technol 215:398–402. https://doi.org/10.1016/j.seppur.2019.01.027

    Article  CAS  Google Scholar 

  2. Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503. https://doi.org/10.1021/es400614y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeng X, Li J, Liu L (2015) Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew Sustain Energy Rev 52:1759–1767. https://doi.org/10.1016/j.rser.2015.08.014

    Article  CAS  Google Scholar 

  4. Peng C, Liu F, Wang Z et al (2019) Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J Power Sources 415:179–188. https://doi.org/10.1016/j.jpowsour.2019.01.072

    Article  CAS  Google Scholar 

  5. Yue LP, Lou P, Xu GH et al (2020) Regeneration of degraded LiNi0.5Co0.2Mn0.3O2 from spent lithium ion batteries. Ionics (Kiel) 26:2757–2761. https://doi.org/10.1007/s11581-020-03479-8

    Article  CAS  Google Scholar 

  6. Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 32:1575–1582. https://doi.org/10.1016/j.wasman.2012.03.027

    Article  CAS  PubMed  Google Scholar 

  7. Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44:1129–1165. https://doi.org/10.1080/10643389.2013.763578

    Article  CAS  Google Scholar 

  8. Zheng X, Zhu Z, Lin X et al (2018) A mini-review on metal recycling from spent lithium ion batteries. Engineering 4:361–370. https://doi.org/10.1016/j.eng.2018.05.018

    Article  CAS  Google Scholar 

  9. Boxall NJ, Cheng KY, Bruckard W, Kaksonen AH (2018) Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J Hazard Mater 360:504–511. https://doi.org/10.1016/j.jhazmat.2018.08.024

    Article  CAS  PubMed  Google Scholar 

  10. Dutta D, Kumari A, Panda R et al (2018) Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Sep Purif Technol 200:327–334. https://doi.org/10.1016/j.seppur.2018.02.022

    Article  CAS  Google Scholar 

  11. Liu C, Lin J, Cao H et al (2019) Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review. J Clean Prod 228:801–813. https://doi.org/10.1016/j.jclepro.2019.04.304

    Article  CAS  Google Scholar 

  12. Gaines L (2014) The future of automotive lithium-ion battery recycling: charting a sustainable course. Sustain Mater Technol 1:2–7. https://doi.org/10.1016/j.susmat.2014.10.001

    Article  Google Scholar 

  13. Chen X, Chen Y, Zhou T et al (2015) Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Waste Manag 38:349–356. https://doi.org/10.1016/j.wasman.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  14. Asadi Dalini E, Karimi G, Zandevakili S, Goodarzi M (2020) A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Miner Process Extr Metall Rev 00:1–22. https://doi.org/10.1080/08827508.2020.1781628

    Article  CAS  Google Scholar 

  15. Barik SP, Prabaharan G, Kumar L (2017) Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: laboratory and pilot scale study. J Clean Prod 147:37–43. https://doi.org/10.1016/j.jclepro.2017.01.095

    Article  CAS  Google Scholar 

  16. Swain B, Jeong J, Lee J-C et al (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167:536–544. https://doi.org/10.1016/j.jpowsour.2007.02.046

    Article  CAS  Google Scholar 

  17. Hu J, Zhang J, Li H et al (2017) A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources 351:192–199. https://doi.org/10.1016/j.jpowsour.2017.03.093

    Article  CAS  Google Scholar 

  18. Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170:210–215. https://doi.org/10.1016/j.jpowsour.2007.04.025

    Article  CAS  Google Scholar 

  19. Zhang J, Hu J, Zhang W et al (2018) Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J Clean Prod 204:437–446. https://doi.org/10.1016/j.jclepro.2018.09.033

    Article  CAS  Google Scholar 

  20. Yuliusman, Fajaryanto R, Nurqomariah A, Silvia (2018) Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid. E3S Web Conf 67:1–5. https://doi.org/10.1051/e3sconf/20186703025

    Article  CAS  Google Scholar 

  21. Chen X, Ma H, Luo C, Zhou T (2017) Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J Hazard Mater 326:77–86. https://doi.org/10.1016/j.jhazmat.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  22. Setiawan H, Petrus HTBM, Perdana I (2019) Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid. Int J Miner Metall Mater 26:98–107. https://doi.org/10.1007/s12613-019-1713-0

    Article  CAS  Google Scholar 

  23. Gao W, Zhang X, Zheng X et al (2017) Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environ Sci Technol 51:1662–1669. https://doi.org/10.1021/acs.est.6b03320

    Article  CAS  PubMed  Google Scholar 

  24. de Oliveira Demarco J, StefanelloCadore J, da Silveira de Oliveira F et al (2019) Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy 190:105169. https://doi.org/10.1016/j.hydromet.2019.105169

    Article  CAS  Google Scholar 

  25. Li L, Zhai L, Zhang X et al (2014) Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources 262:380–385. https://doi.org/10.1016/j.jpowsour.2014.04.013

    Article  CAS  Google Scholar 

  26. Yang YQ, Wang CY, Li DF et al (2011) Study on the leaching of LiCoO2 in low H2SO4 concentration solutions. Adv Mater Res 201–203:1752–1756. https://doi.org/10.4028/www.scientific.net/AMR.201-203.1752

    Article  CAS  Google Scholar 

  27. Vieceli N, Nogueira CA, Guimarães C et al (2018) Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Manag 71:350–361. https://doi.org/10.1016/j.wasman.2017.09.032

    Article  CAS  PubMed  Google Scholar 

  28. Wang S, Wang C, Lai F et al (2020) Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: effect of reductants and ammonium salts. Waste Manag 102:122–130. https://doi.org/10.1016/j.wasman.2019.10.017

    Article  CAS  PubMed  Google Scholar 

  29. Chander S, Sharma VN (1981) Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy 7:315–327. https://doi.org/10.1016/0304-386X(81)90029-3

    Article  CAS  Google Scholar 

  30. Jeon SH, Yoo K, Alorro RD (2017) Separation of Sn, Bi, Cu from Pb-free solder paste by ammonia leaching followed by hydrochloric acid leaching. Hydrometallurgy 169:26–30. https://doi.org/10.1016/j.hydromet.2016.12.004

    Article  CAS  Google Scholar 

  31. Li J, Chen Z, Shen B et al (2017) The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. J Clean Prod 140:1148–1155. https://doi.org/10.1016/j.jclepro.2016.10.050

    Article  CAS  Google Scholar 

  32. Wang C, Wang S, Yan F et al (2020) Recycling of spent lithium-ion batteries: selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag 114:253–262. https://doi.org/10.1016/j.wasman.2020.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Ku H, Jung Y, Jo M et al (2016) Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater 313:138–146. https://doi.org/10.1016/j.jhazmat.2016.03.062

    Article  CAS  PubMed  Google Scholar 

  34. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151. https://doi.org/10.1016/S0013-4686(02)00593-5

    Article  CAS  Google Scholar 

  35. Wu F, Tian J, Su Y et al (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7:7702–7708. https://doi.org/10.1021/acsami.5b00645

    Article  CAS  PubMed  Google Scholar 

  36. Meng X, Han KN (1996) Principles and applications of ammonia leaching of metals—a review. Miner Process Extr Metall Rev 16:23–61. https://doi.org/10.1080/08827509608914128

    Article  CAS  Google Scholar 

  37. Zuniga M, Parada LF, Asselin E (2010) Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy 104:260–267. https://doi.org/10.1016/j.hydromet.2010.06.014

    Article  CAS  Google Scholar 

  38. Chen Y, Liu N, Hu F et al (2018) Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 75:469–476. https://doi.org/10.1016/j.wasman.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  39. Golmohammadzadeh R, Faraji F, Rashchi F (2018) Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review. Resour Conserv Recycl 136:418–435. https://doi.org/10.1016/j.resconrec.2018.04.024

    Article  Google Scholar 

  40. Takeno N (2005) Atlas of Eh-pH diagrams intercomparison of thermodynamic databases. Natl Inst Adv Ind Sci Technol, Tokyo, pp. 145–147

  41. Wang RT, Tai EG, Chen JY et al (2019) A KMnF3 perovskite structure with improved stability, low bandgap and high transport properties. Ceram Int 45:64–68. https://doi.org/10.1016/j.ceramint.2018.09.134

    Article  CAS  Google Scholar 

  42. Santhanam R, Jones P, Sumana A et al (2010) Influence of lithium content on high rate cycleability of layered Li1+xNi0.30Co0.30Mn0.40O2 cathodes for high power lithium-ion batteries. J Power Sources 195:7391–7396. https://doi.org/10.1016/j.jpowsour.2010.06.004

    Article  CAS  Google Scholar 

  43. Xia Y, Nie M, Wang Z et al (2015) Structural, morphological and electrochemical investigation sintering conditions. Ceram Int 41:11815–11823. https://doi.org/10.1016/j.ceramint.2015.05.150

    Article  CAS  Google Scholar 

  44. Shang M, Peng L (2021) The regeneration and electrochemical performance study of NCM622 cathode materials. Ionics (Kiel) 27:527–532. https://doi.org/10.1007/s11581-020-03861-6

    Article  CAS  Google Scholar 

  45. Yang X, Dong P, Hao T et al (2020) A combined method of leaching and co-precipitation for recycling spent LiNi0.6Co0.2Mn0.2O2 cathode materials: process optimization and performance aspects. Jom 72:3843–3852. https://doi.org/10.1007/s11837-020-04263-9

    Article  CAS  Google Scholar 

  46. Fei Z, Meng Q, Dong P et al (2021) Preparation of cathode materials by spray drying from leaching solution of spent lithium-ion batteries materials. Int J Electrochem Sci 16:1–10. https://doi.org/10.20964/2021.03.17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Guo.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Guo, G., Wu, J. et al. Recycling and reutilization of LiNi0.6Co0.2Mn0.2O2 cathode materials from spent lithium-ion battery. Ionics 28, 241–250 (2022). https://doi.org/10.1007/s11581-021-04308-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04308-2

Keywords

Navigation