Skip to main content

Advertisement

Log in

High performance aqueous Li-ion capacitors with palladium nanoparticle/graphene composite anode and activated carbon cathode employing safe and environmentally friendly electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-ion capacitors (LICs) are a potential bridge between conventional Li-ion batteries (LIBs) with high energy density and capacitors with high power density. In this work, we demonstrate high energy, power, and cycle life LICs with anodes based on palladium nanoparticle-decorated reduced graphene oxide (rGO@Pd) and activated carbon (AC)-based cathodes. Aqueous LiNO3 solution has been employed as electrolyte due to its superior safety characteristics and environmental friendliness. GO was prepared by modified Hummers’ method, and rGO@Pd was subsequently synthesized by facile hydrothermal reduction with PdCl2. Electrodes were fabricated by drop casting additive-free rGO@Pd and AC slurry on carbon paper current collectors. Scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction as well as Raman spectroscopy have been used to characterize the developed materials. We were able to show successful Pd nanoparticle formation and uniform distribution in the composite. The prepared electrodes have been used to construct CR2032 coin cell LICs the performance of which was evaluated by 2-electrode cyclic voltammetry and galvanostatic charge–discharge with 1 M LiNO3 electrolyte. The LICs exhibited excellent electrochemical performance with specific capacitance of 188.6 F g−1 and energy and power densities of 51.3Wh kg−1 and 46.5 kW kg−1 at a current of 1 A g−1. The capacitors retained 95.3% of initial capacitance after 10,000 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308. https://doi.org/10.1016/j.rser.2018.03.002

    Article  Google Scholar 

  3. Shao Y, Shen F, Shao Y (2021) Recent advances in aqueous zinc-ion hybrid capacitors: a minireview. ChemElectroChem 8:484–491. https://doi.org/10.1002/celc.202001322

    Article  CAS  Google Scholar 

  4. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  5. Lang J, Zhang X, Liu B et al (2018) The roles of graphene in advanced Li-ion hybrid supercapacitors. J Energy Chem 27:43–56. https://doi.org/10.1016/j.jechem.2017.11.020

    Article  Google Scholar 

  6. Barré A, Deguilhem B, Grolleau S et al (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040

    Article  CAS  Google Scholar 

  7. Ding J, Hu W, Paek E, Mitlin D (2018) Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00116

    Article  PubMed  Google Scholar 

  8. Han P, Ma W, Pang S et al (2013) Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. Journal of Materials Chemistry A 1:5949. https://doi.org/10.1039/c3ta10853h

    Article  CAS  Google Scholar 

  9. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  CAS  Google Scholar 

  10. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  11. Ock IW, Choi JW, Jeong HM, Kang JK (2018) Synthesis of pseudocapacitive polymer chain anode and subnanoscale metal oxide cathode for aqueous hybrid capacitors enabling high energy and power densities along with long cycle life. Adv Energy Mater 8:1702895. https://doi.org/10.1002/aenm.201702895

    Article  CAS  Google Scholar 

  12. Li C, Wu W, Zhang S et al (2019) A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte. J Mater Chem A 7:4110–4118. https://doi.org/10.1039/C8TA11735G

    Article  CAS  Google Scholar 

  13. Pazhamalai P, Krishnamoorthy K, Sudhakaran MSP, Kim SJ (2017) Fabrication of high-performance aqueous Li-ion hybrid capacitor with LiMn2O4 and graphene. ChemElectroChem 4:396–403. https://doi.org/10.1002/celc.201600550

    Article  CAS  Google Scholar 

  14. Yan J, Sun Y, Jiang L et al (2013) Electrochemical performance of lithium ion capacitors using aqueous electrolyte at high temperature. J Renew Sustain Energy 5:021404. https://doi.org/10.1063/1.4798432

    Article  CAS  Google Scholar 

  15. Shellikeri A, Yturriaga S, Zheng JS et al (2018) Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode – long term cycle life study, rate effect and charge sharing analysis. J Power Sources 392:285–295. https://doi.org/10.1016/j.jpowsour.2018.05.002

    Article  CAS  Google Scholar 

  16. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509. https://doi.org/10.1038/nnano.2009.177

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z-S, Zhou G, Yin L-C et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131. https://doi.org/10.1016/j.nanoen.2011.11.001

    Article  CAS  Google Scholar 

  18. Yan J, Fan Z, Sun W et al (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Func Mater 22:2632–2641. https://doi.org/10.1002/adfm.201102839

    Article  CAS  Google Scholar 

  19. Yang S, Han Z, Sun J et al (2018) Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochim Acta 268:20–26. https://doi.org/10.1016/j.electacta.2018.02.028

    Article  CAS  Google Scholar 

  20. Liu W, Li J, Feng K et al (2016) Advanced Li-ion hybrid supercapacitors based on 3D graphene–foam composites. ACS Appl Mater Interfaces 8:25941–25953. https://doi.org/10.1021/acsami.6b07365

    Article  CAS  PubMed  Google Scholar 

  21. Sun X, Zhang X, Huang B et al (2013) (LiNi 0.5 Co 0.2 Mn 0.3 O 2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. J Power Sources 243:361–368. https://doi.org/10.1016/j.jpowsour.2013.06.038

    Article  CAS  Google Scholar 

  22. Shi Z, Zhang J, Wang J et al (2015) Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta 153:476–483. https://doi.org/10.1016/j.electacta.2014.12.018

    Article  CAS  Google Scholar 

  23. Lee JH, Shin WH, Ryou M-H et al (2012) Functionalized graphene for high performance lithium ion capacitors. Chemsuschem 5:2328–2333. https://doi.org/10.1002/cssc.201200549

    Article  CAS  PubMed  Google Scholar 

  24. Banerjee A, Upadhyay KK, Puthusseri D et al (2014) MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale 6:4387. https://doi.org/10.1039/c4nr00025k

    Article  CAS  PubMed  Google Scholar 

  25. Xu N, Sun X, Zhang X et al (2015) A two-step method for preparing Li4Ti5O12–graphene as an anode material for lithium-ion hybrid capacitors. RSC Adv 5:94361–94368. https://doi.org/10.1039/C5RA20168C

    Article  CAS  Google Scholar 

  26. Natarajan S, Subramanyan K, Aravindan V (2019) Focus on spinel Li4Ti5 O12 as insertion type anode for high-performance Na-ion batteries. Small 15:1904484. https://doi.org/10.1002/smll.201904484

    Article  CAS  Google Scholar 

  27. Divya ML, Natarajan S, Lee Y, Aravindan V (2019) Biomass-derived carbon: a value-added journey towards constructing high-energy supercapacitors in an asymmetric fashion. Chemsuschem 12:4353–4382. https://doi.org/10.1002/cssc.201901880

    Article  CAS  PubMed  Google Scholar 

  28. Kim H, Cho M-Y, Kim M-H et al (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506. https://doi.org/10.1002/aenm.201300467

    Article  CAS  Google Scholar 

  29. Liu H, Zhao W, Zhang S et al (2018) Hierarchical hollow microspheres constructed by carbon skeleton supported TiO2-x few-layer nanosheets enable high rate capability and excellent cycling stability for lithium storage. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.8b00331

    Article  Google Scholar 

  30. Wang H, Zhang Y, Ang H et al (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Func Mater 26:3082–3093. https://doi.org/10.1002/adfm.201505240

    Article  CAS  Google Scholar 

  31. Zhang S, Li C, Zhang X et al (2017) High performance lithium-ion hybrid capacitors employing Fe3O4–graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces 9:17136–17144. https://doi.org/10.1021/acsami.7b03452

    Article  CAS  PubMed  Google Scholar 

  32. Vijayan S, Kirubasankar B, Pazhamalai P et al (2017) Electrospun Nd3+-doped LiMn2O4 nanofibers as high-performance cathode material for Li-ion capacitors. ChemElectroChem 4:2059–2067. https://doi.org/10.1002/celc.201700161

    Article  CAS  Google Scholar 

  33. Ulaganathan M, Aravindan V, Ling WC et al (2016) High energy Li-ion capacitors with conversion type Mn3O4 particulates anchored to few layer graphene as the negative electrode. J Mater Chem A 4:15134–15139. https://doi.org/10.1039/C6TA05944A

    Article  CAS  Google Scholar 

  34. Kong L, Zhang C, Wang J et al (2015) Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9:11200–11208. https://doi.org/10.1021/acsnano.5b04737

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Zhang L, Han P et al (2015) Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors. Part Part Syst Charact 32:1006–1011. https://doi.org/10.1002/ppsc.201500095

    Article  CAS  Google Scholar 

  36. Li J, Kurra N, Seredych M et al (2019) Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy 56:151–159. https://doi.org/10.1016/j.nanoen.2018.11.042

    Article  CAS  Google Scholar 

  37. Chen L, Chen L, Zhai W et al (2019) Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. J Power Sources 413:302–309. https://doi.org/10.1016/j.jpowsour.2018.12.026

    Article  CAS  Google Scholar 

  38. Divya ML, Natarajan S, Lee Y-S, Aravindan V (2020) Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries. J Mater Chem A 8:4950–4959. https://doi.org/10.1039/C9TA13913C

    Article  CAS  Google Scholar 

  39. Liu M, Zhang Z, Dou M et al (2019) Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon 151:28–35. https://doi.org/10.1016/j.carbon.2019.05.065

    Article  CAS  Google Scholar 

  40. Han Z, Tang Z, Li P et al (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462. https://doi.org/10.1039/c3nr00971h

    Article  CAS  PubMed  Google Scholar 

  41. Gobal F, Faraji M (2013) Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor. J Electroanal Chem 691:51–56. https://doi.org/10.1016/j.jelechem.2012.12.008

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Thailand Research Fund for the TRF Research Team Promotion Grant (RTA6180004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adisorn Tuantranont.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mensing, J.P., Lomas, T. & Tuantranont, A. High performance aqueous Li-ion capacitors with palladium nanoparticle/graphene composite anode and activated carbon cathode employing safe and environmentally friendly electrolytes. Ionics 28, 443–450 (2022). https://doi.org/10.1007/s11581-021-04298-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04298-1

Keywords

Navigation