Skip to main content

Advertisement

Log in

The prospected application of V6O13 in lithium-ion supercapacitors based on its researches in lithium-ion batteries and supercapacitors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the increasing demands of sustainable development society and emerging industries for energy storage technology, energy-storing devices have always been the primary driving force for the revolution of equipment performance. Lithium-ion supercapacitors have attracted more attention possessing both notable advantages of supercapacitors and lithium-ion batteries, among which electrode materials are the key to improve their performance. Particularly, V6O13 as the positive electrode of lithium-ion batteries with excellent electrochemical performance has been widely studied. This paper introduces the studies on the application of V6O13 cathode in supercapacitors for the first time. Importantly, the preparation and modification methods of V6O13 are reviewed with reference to its use in lithium-ion batteries, and the possibility of its application in lithium-ion supercapacitors is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ajdari FB, Najafi MD, Ostad MI, Naderi HR, Shahrak MN, Kowsari E, Ramakrishna S (2021) A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes. J Mol Liq 333:116007

    Article  Google Scholar 

  2. Aldalbahi A, Samuel E, Alotaibi BS, El-Hamshary H, Yoon SS (2021) Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications. J Mater Sci Technol 82:47–56

    Article  Google Scholar 

  3. Bharti G, Ahmed Y, Kumar S (2021) Sharma, DFT computation of quantum capacitance of pure and doped niobium nitrides for supercapacitor applications. Ceram Int 47:18948–18955

    Article  CAS  Google Scholar 

  4. Cai CY, Zhou WB, Fu Y (2021) Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem Eng J 418:129275

    Article  CAS  Google Scholar 

  5. Cao LH, Li HL, Liu XL, Liu SW, Zhang L, Xu WH, Yang HQ, Hou HQ, He SJ, Zhao Y, Jiang SH (2021) Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with “sphere-in-layer” interconnection for high-performance supercapacitor. J Colloid Interf Sci 599:443–452

    Article  CAS  Google Scholar 

  6. Chang CS, Li M, Niu P, Zhang L, Wang SL (2021) A facile dual-functional hydrothermal-assisted synthesis strategy of hierarchical porous carbon for enhanced supercapacitor performance. Sustain Mater Technol 28:e00265

    CAS  Google Scholar 

  7. Chen L, Hao CY, Zhang YM, Wei YR, Dai LN, Cheng J, Zhang HQ, Ci LJ (2021) Guest ions pre-intercalation strategy of manganese-oxides for supercapacitor and battery applications. J Energy Chem 60:480–493

    Article  Google Scholar 

  8. Chen LN, Zheng XW, Hao CY, Wei YR, Cheng J, Zhang HQ, Wu JW, Si PC, Ci LJ (2021) A high-energy, long cycle life aqueous hybrid supercapacitor enabled by efficient battery electrode and widened potential window. J Alloy Compd 877:160273

    Article  CAS  Google Scholar 

  9. Chen YC, Kang CX, Ma L, Fu LK, Li GH, Hu Q, Liu QM (2021) MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor. Chem Eng J 417:129243

    Article  CAS  Google Scholar 

  10. Chodankar NR, Shinde PA, Patil SJ, Hwang SK, Raju GSR, Ranjith KS, Dubal DP, Huh YS, Han YK (2021) Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor. Energy Storage Mater 39:194–202

    Article  Google Scholar 

  11. Das AK, Pan UN, Sharma V, Kim NH, Lee JH (2021) Nanostructured CeO2/NiV-LDH composite for energy storage in asymmetric supercapacitor and as methanol oxidation electrocatalyst. Chem Eng J 417:128019

    Article  CAS  Google Scholar 

  12. Deng BW, Yang Y, Yin B, Yang MB (2021) Fabrication of a NiO@NF supported free-standing porous carbon supercapacitor electrode using temperature-controlled phase separation method. J Colloid Interf Sci 594:770–780

    Article  CAS  Google Scholar 

  13. Schiavi PG, Altimari P, Zanoni R, Pagnanelli F (2021) Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor. J Energy Chem 58:336–344

    Article  Google Scholar 

  14. Shi J, Jiang BL, Liu Z, Li C, Yan FY, Liu XS, Li HT, Yang C, Dong D (2021) Effects of specific surface area of electrode and different electrolyte on capacitance properties in nano porous-structure CrN thin film electrode for supercapacitor. Ceram Int 47:18540–18549

    Article  CAS  Google Scholar 

  15. Shoeb M, Mobin M, Rauf MA, Adnan SM, Ansari MY (2021) Graphene nickel-copper nanocomposite (Gr@NiCu NCs) as a binder free electrode for high energy density supercapacitor and antimicrobial application. J Materiomics 7:815–827

    Article  Google Scholar 

  16. Zhang B, He JK, Zheng GF, Huang YY, Wang CH, He PS, Sui FP, Meng LC, Lin LW (2021) Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes. J Mater Sci Technol 82:135–143

    Article  Google Scholar 

  17. Zhang RR, Chen CN, Yu HH, Cai S, Xu YM, Yang Y, Chang HL (2021) All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes. J Electroanal Chem 893:115323

    Article  CAS  Google Scholar 

  18. Dhanasekaran T, Yesuraj J, Narayanan V, Kim K (2021) Gradient oxygen vacancies in BiVO4 olive-seeds nanostructure for electrochemical supercapacitor applications. Mater Chem Phys 269:124737

    Article  CAS  Google Scholar 

  19. Dutta A, Nayak R, Selvakumar M, Devadiga D, Selvaraj P, Kumar SS (2021) Graphite/copper nanoparticle-based high-performance micro supercapacitor with porous wet paper-based PVA-PVP blend polymer electrolyte. Mater Lett 295:129849

    Article  CAS  Google Scholar 

  20. Gupta A, Jain A, Tripathi SK (2021) Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application. J Polym Res 28:235

    Article  CAS  Google Scholar 

  21. Han J, Choi Y, Lee J, Pyo S, Jo S, Yoo J (2021) UV curable ionogel for all-solid-state supercapacitor. Chem Eng J 416:129089

    Article  CAS  Google Scholar 

  22. Wang HW, Wang C, Xiong Y, Jin CD, Sun QF (2017) Simple synthesis of N-doped interconnected porous carbon from Chinese tofu for high-performance supercapacitor and lithium-ion battery applications. J Electrochem Soc 164:A3832–A3839

    Article  CAS  Google Scholar 

  23. Divya S, Pongilat R, Kuila T, Nallathamby K, Srivastava SK, Roy P (2016) Spinel-structured NiCo2O4 nanorods as energy efficient electrode for supercapacitor and lithium ion battery applications. J Nanosci Nanotechnol 16:9761–9770

    Article  CAS  Google Scholar 

  24. Xie YB, Song F, Xia C, Du HX (2015) Preparation of carbon-coated lithium iron phosphate/titanium nitride for a lithium-ion supercapacitor. New J Chem 39:604–613

    Article  CAS  Google Scholar 

  25. Choi HS, Park CR (2014) Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J Power Sources 259:1–14

    Article  CAS  Google Scholar 

  26. Garcia EM, Taroco HA, Matencio T, Domingues RZ, dos Santos JAF, Ferreira RV, Lorencon E, Lima DQ, de Freitas MBJG (2012) Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: its application as supercapacitor. J Appl Electrochem 42:361–366

    Article  CAS  Google Scholar 

  27. Qu DY, Wen JF, Zheng D, Harris J, Liu D, Wang L, Xie ZZ, Tang HL, Xiao L, Qu DY (2017) Fabrication of nitrogen doped carbon encapsulated ZnO particle and its application in a lithium ion conversion supercapacitor. J Mater Res 32:334–342

    Article  CAS  Google Scholar 

  28. Wang YJ, Zhang X, Liu C, Pan R, Chen ZH (2018) Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter. J Power Sources 389:93–105

    Article  CAS  Google Scholar 

  29. He WW, Ren PG, Dai Z, Hou X, Ren F, Jin YL (2021) Hierarchical porous carbon composite constructed with 1-D CNT and 2-D GNS anchored on 3-D carbon skeleton from spent coffee grounds for supercapacitor. Appl Surf Sci 558:149899

    Article  CAS  Google Scholar 

  30. Hong XD, Wang X, Fu JW, Li Y, Liang B (2021) Spreading GO nanosheets-coated nickel foam decorated by NiCo2O4/NiCo2S4 nanoarrays for high-performance supercapacitor electrodes. Electrochim Acta 385:138437

    Article  CAS  Google Scholar 

  31. Hossain R, Al Mahmood A, Sahajwalla V (2021) Recovering renewable carbon materials from automotive shredder residue (ASR) for micro-supercapacitor electrodes. J Clean Prod 304:127131

    Article  CAS  Google Scholar 

  32. Hu QL, Yue B, Shao HY, Yang F, Wang JH, Wang Y, Liu JH (2021) Facile syntheses of perovskite type LaMO3 (M=Fe Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J Alloy Compd 852:157002

    Article  CAS  Google Scholar 

  33. Zhu J, Xu Z, Lu BN (2014) Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy 7:114–123

    Article  CAS  Google Scholar 

  34. Fan Q, Yang M, Meng QH, Cao B, Yu YH (2016) Activated-nitrogen-doped graphene-based aerogel composites as cathode materials for high energy density lithium-ion supercapacitor. J Electrochem Soc 163:A1736–A1742

    Article  CAS  Google Scholar 

  35. Abdollahi A, Abnavi A, Ghasemi S, Mohajerzadeh S, Sanaee Z (2019) Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor. Electrochim Acta 320:134598

    Article  CAS  Google Scholar 

  36. Li R, Xing F, Li TY, Zhang HM, Yan JW, Zheng Q, Li XF (2021) Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery. Energy Storage Mater 38:590–598

    Article  Google Scholar 

  37. Yang E, Lee JG, Park ED, An K (2021) Methane oxidation to formaldehyde over vanadium oxide supported on various mesoporous silicas. Korean J Chem Eng 38:1224–1230

    Article  CAS  Google Scholar 

  38. Ponnaiah SK, Prakash P (2021) A new high-performance supercapacitor electrode of strategically integrated cerium vanadium oxide and polypyrrole nanocomposite. Int J Hydrogen Energ 46:19323–19337

    Article  CAS  Google Scholar 

  39. Gorenstein A, Khelfa A, Guesdon JP, Nazri GA, Hussain OM, Ivanov I (1995) The growth and electrochemical properties of V6O13 flash-evaporated films. Solid State Ionics 76:133–141

    Article  CAS  Google Scholar 

  40. Gupta K, Kumar S, Singhal R (2021) Effect of annealing and swift heavy ions irradiation on vanadium oxide thin films. Radiation Effects and Defects in Solids.

  41. He JY, Long F, Peng DJ, Wu XL, Mo SY, Zou ZG (2017) Ribbon-like Cu doped V6O13 as cathode material for high-performance lithium ion batteries. J Wuhan Univ Technol 32:1397–1401

    Article  CAS  Google Scholar 

  42. He JY, Long F, Zou ZG, Wang WM, Fu ZY (2015) Hydrothermal synthesis and electrochemical performance of Mn-doped V6O13 as cathode material for lithium-ion battery. Ionics 21:995–1001

    Article  CAS  Google Scholar 

  43. Bamba IF, Falaise C, Gbassi GK, Atheba P, Haouas M, Cadot E (2020) N-tert-Butoxycarbonyl (BOC) protected [V6O13{(OCH2)(3)CNH2}(2)](2-): synthesis, structural characterization, and solution behavior. J Coord Chem 73:2567–2578

    Article  Google Scholar 

  44. Bayaguud A, Chen K, Wei YG (2016) Facile synthesis of an organically-derivatized hexavanadate containing the remote amino group, TBA(2)[V6O13{(OCH2)(3)CNH2}(2)]. CrystEngComm 18:4042–4045

    Article  CAS  Google Scholar 

  45. Bergstrom I, Gustafsson T, Thomas JO (1998) Lithium insertion into V6O13 studied by deformation electron density refinement of single-crystal x-ray data. Solid State Ionics 110:179–186

    Article  CAS  Google Scholar 

  46. Braithwaite JS, Richard C, Catlow A, Harding JH, Gale JD (2001) A theoretical study of lithium intercalation into V6O13 - a combined classical, quantum mechanical approach. Phys Chem Chem Phys 3:4052–4059

    Article  Google Scholar 

  47. Wen Z, Fu XG, Li Y, Shi TT, Liu PY, Jian C, Xu JB, Chen QL, Wang XM, Xie WG (2020) Growth dynamics and photoresponse of the Wadsley phase V6O13 crystals. J Mater Chem C 8:6470–6477

    Article  Google Scholar 

  48. Wu ZP, Qiu WT, Chen YX, Luo Y, Huang YC, Lei QF, Guo SB, Liu P, Balogun MS, Tong YX (2017) Etched current collector-guided creation of wrinkles in steel-mesh-supported V6O13 cathode for lithium-ion batteries. J Mater Chem A 5:756–764

    Article  CAS  Google Scholar 

  49. Ding YL, Wen YR, Wu C, van Aken PA, Maier J, Yu Y (2015) 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett 15:1388–1394

    Article  CAS  PubMed  Google Scholar 

  50. Fei HL, Lin YS, Wei MD (2014) Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance. J Colloid Interf Sci 425:1–4

    Article  CAS  Google Scholar 

  51. Frank A, Dias M, Hieke S, Kruth A, Scheu C (2021) Spontaneous fluctuations in a plasma ion assisted deposition - correlation between deposition conditions and vanadium oxide thin film growth. Thin Solid Films 722:138574

    Article  CAS  Google Scholar 

  52. Howing J, Gustafsson T, Thomas JO (2003) Low-temperature structure of V6O13, Acta Crystallographica Section B-Structural. Science 59:747–752

    Google Scholar 

  53. Howing J, Gustafsson T, Thomas JO (2004) Li3+delta V6O13: a short-range-ordered lithium insertion mechanism. Acta Crystallogr B 60:382–387

    Article  PubMed  Google Scholar 

  54. Hu J, Chen H, Xiang KX, Xiao L, Chen WH, Liao HY, Chen H (2021) Preparation for V6O13@hollow carbon microspheres and their remarkable electrochemical performance for aqueous zinc-ion batteries. J Alloy Compd 856:157085

    Article  CAS  Google Scholar 

  55. He JY, Wang WM, Zou ZG, Long F, Fu ZY (2014) Solvothermal synthesis and electrochemical performance of Ag-doped V6O13 as cathode material for lithium-ion battery. Ionics 20:1063–1070

    Article  CAS  Google Scholar 

  56. He JY, Wang WM, Zou ZG, Long F, Fu ZY (2014) Solvothermal synthesis and electrochemical performance of rod-like V6O13 as cathode material for lithium ion battery. J Electroceram 32:276–282

    Article  CAS  Google Scholar 

  57. He PG, Liu JH, Zhao XD, Ding ZP, Gao P, Fan LZ (2020) A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J Mater Chem A 8:10370–10376

    Article  CAS  Google Scholar 

  58. Huang ZY, Zeng HM, Xue L, Zhou XG, Zhao Y, Lai QY (2011) Synthesis of vanadium oxide, V6O13 hollow-flowers materials and their application in electrochemical supercapacitors. J Alloy Compd 509:10080–10085

    Article  CAS  Google Scholar 

  59. Lai JW, Zhu HH, Zhu XP, Koritala H, Wang Y (2019) Interlayer-expanded V6O13 center dot nH(2)O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. Acs Appl Energ Mater 2:1988–1996

    Article  CAS  Google Scholar 

  60. Schmitt T, Augustsson A, Duda LC, Nordgren J, Howing J, Gustafsson T (2004) Li insertion into V6O13 battery cathodes studied by soft x-ray spectroscopies. J Appl Phys 95:6444–6449

    Article  CAS  Google Scholar 

  61. Leger C, Bach S, Pereira-Ramos JP (2007) The sol-gel chromium-modified V6O13 as a cathodic material for lithium batteries. J Solid State Electr 11:71–76

    Article  Google Scholar 

  62. Li HQ, He P, Wang YG, Hosono E, Zhou HS (2011) High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J Mater Chem 21:10999–11009

    Article  CAS  Google Scholar 

  63. Li SY, Zou ZG, Wu XY, Zhang YJ (2019) Solvothermal preparation of carbon coated V6O13 nanocomposite as cathode material for lithium-ion battery. J Electroanal Chem 846:113173

    Article  CAS  Google Scholar 

  64. Li YX, Fedkiw PS, Khan SA (2002) Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim Acta 47:3853–3861

    Article  CAS  Google Scholar 

  65. Lin YT, Zhou FS, Xie MX, Zhang S, Deng C (2020) V6O13-delta@C nanoscrolls with expanded distances between adjacent shells as a high-performance cathode for a knittable zinc-ion battery. Chemsuschem 13:3696–3706

    Article  CAS  PubMed  Google Scholar 

  66. Lv TT, Zou ZG, Li YW, Li SY, Zhang YJ (2018) Hydrothermal synthesis of high specific capacity Al/Na co-doped V6O13 cathode material for lithium-ion battery. J Electroanal Chem 829:42–50

    Article  CAS  Google Scholar 

  67. Meng W, Pigliapochi R, Bayley PM, Pecher O, Gaultois MW, Seymour ID, Liang HP, Xu WQ, Wiaderek KM, Chapman KW, Grey CP (2017) Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem Mater 29:5513–5524

    Article  CAS  Google Scholar 

  68. Munshi MZA, Smyrl WH, Schmidtke C (1991) Insertion reaction of V6O13 electrodes reversibly incorporating divalent-cations. Solid State Ionics 47:265–270

    Article  CAS  Google Scholar 

  69. Murphy D, Christian PA, Disalvo F, Carides J (1979) Vanadium oxide cathode materials for secondary lithium cells. J Electrochem Soc 126:497–499

    Article  CAS  Google Scholar 

  70. Mutta GR, Popuri SR, Ruterana P, Buckman J (2017) Single step hydrothermal synthesis of mixed valent V6O13 nano-architectures: a case study of the possible applications in electrochemical energy conversion. J Alloy Compd 706:562–567

    Article  CAS  Google Scholar 

  71. Onoda M, Ohki T, Uchida Y (2004) The role of two types of trellis layer for metal-insulator transition and antiferromagnetic order in the one-dimensional conductor V6O13. J Phys-Condens Mat 16:7863–7871

    Article  CAS  Google Scholar 

  72. Ansari MZ, Ansari SA, Parveen N, Cho MH, Song T (2018) Lithium ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets. New J Chem 42:5859–5867

    Article  CAS  Google Scholar 

  73. Natarajan S, Ede SR, Bajaj HC, Kundu S (2018) Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor. Colloid Surface A 543:98–108

    Article  CAS  Google Scholar 

  74. Alagar S, Madhuvilakku R, Mariappan R, Piraman S (2018) Synthesize of porous LiNi0.5Mn1.5O4 microcubes for lithium-ion battery and supercapacitor applications. J Mater Sci-Mater El 29:1173–1181

    Article  CAS  Google Scholar 

  75. Peys N, Ling Y, Dewulf D, Gielis S, De Dobbelaere C, Cuypers D, Adriaensens P, Van Doorslaer S, De Gendt S, Hardy A, Van Bael MK (2013) V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase. Dalton Trans 42:959–968

    Article  CAS  PubMed  Google Scholar 

  76. Rua A, Fernandez FE, Cabrera R, Sepulveda N (2009) Young’s modulus of pulsed-laser deposited V6O13 thin films. J Appl Phys 105:113504

    Article  Google Scholar 

  77. Sahana MB, Shivashankar SA (2004) Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal-semiconductor transition in V6O13. J Mater Res 19:2859–2870

    Article  CAS  Google Scholar 

  78. Schmitt T, Augustsson A, Nordgren J, Duda LC, Howing J, Gustafsson T, Schwingenschlogl U, Eyert V (2005) Electronic structure of Li-inserted V6O13 battery cathodes: rigid band behavior and effects of hybridization. Appl Phys Lett 86:064101

    Article  Google Scholar 

  79. Zeng HM, Zhao Y, Hao YJ, Lai QY, Huang JH, Ji XY (2009) Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor. J Alloy Compd 477:800–804

    Article  CAS  Google Scholar 

  80. Leger C, Bach S (2007) Pereira-Ramos, The sol–gel chromium-modified V6O13 as a cathodic material for lithium batteries. J Solid State Electrochem 11:71–76

    Article  Google Scholar 

  81. Schmitt T, Duda LC, Matsubara M, Mattesini M, Klemm M, Augustsson A, Guo JH, Uozumi T, Horn S, Ahuja R, Kotani A, Nordgren J (2004) Electronic structure studies of V6O13 by soft x-ray emission spectroscopy: band-like and excitonic vanadium states. Phys Rev B 69:125103

    Article  Google Scholar 

  82. Shan LT, Zhou J, Zhang WY, Xia CT, Guo S, Ma XM, Fang GZ, Wu XW, Liang SQ (2019) Highly reversible phase transition endows V6O13 with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol-Ger 7:1900022

    Article  Google Scholar 

  83. Shi W, Yin BS, Yang Y, Sullivan MB, Wang J, Zhang YW, Yu ZG, Lee WSV, Xue JM (2021) Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano 15:1273–1281

    Article  CAS  PubMed  Google Scholar 

  84. Lampeonnerud C, Thomas JO (1995) Mechanisms for the thermal-decomposition of NH4VO3 into V6O13, V3O7 and V2O5. J Mater Chem 5:1075–1080

    Article  Google Scholar 

  85. Zhang YF, Huang C, Meng CG (2015) Controlled synthesis of V6O13 nanobelts by a facile one-pot hydrothermal process and their effect on thermal decomposition of ammonium perchlorate. Mater Express 5:105–112

    Article  CAS  Google Scholar 

  86. Shigemoto A, Suga S, Sekiyama A, Imada S, Yamasaki A, Irizawa A, Kasai S, Muro T, Saitoh Y, Ueda Y, Yoshimura K (2005) Bulk sensitive photoemission studies of metal-insulator transitions in V6O13 and VO2. J Electron Spectrosc 144:837–839

    Article  Google Scholar 

  87. Shimizu Y, Aoyama S, Jinno T, Itoh M, Ueda Y (2015) Site-selective Mott transition in a quasi-one-dimensional vanadate V6O13. Phys Rev Lett 114:166403

    Article  PubMed  Google Scholar 

  88. Ma X-J, Zhang W-B, Kong L-B, Luo Y-C, Kang L (2016) Pseudocapacitance of ammonium metavanadate pyrolysis products. Electrochim Acta 192:30–37

    Article  CAS  Google Scholar 

  89. Zhou Y, Pan QW, Zhang J, Han CM, Wang L, Xu H (2021) Insights into synergistic effect of acid on morphological control of vanadium oxide: toward high lithium storage. Adv Sci 8:2002579

    Article  CAS  Google Scholar 

  90. Pestereva NN, Guseva AF, Kuznetsov DK, Selezneva NV, Korona DV (2020) Effect of silicon, vanadium, and tungsten oxide additives on the electrical properties of composites based on CaWO4. Russ J Phys Chem A 94:2482–2487

    Article  CAS  Google Scholar 

  91. Yuan XT, Li X (2020) Vanadium hexacyanoferrate derived V-Fe-K mixed oxides as anode materials for lithium-ion batteries. ChemistrySelect 5:13748–13753

    Article  CAS  Google Scholar 

  92. Liang HP, Du J, Jones TGJ, Lawrence NS, Meredith AW (2016) Large-scale production of V6O13 cathode materials assisted by thermal gravimetric analysis-infrared spectroscopy technology. ACS Appl Mater Interfaces 8:25674–25679

    Article  CAS  PubMed  Google Scholar 

  93. Zhang ZG, Huo H, Yu ZJ, Xiang LZ, Xie BX, Du CY, Wang JJ, Yin GP (2021) Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)(2) supercapacitor electrode. J Energy Chem 61:497–506

    Article  Google Scholar 

  94. Zhu MD, Zhang DP, Jiang SY, Liu SG, Qi HJ, Yang Y (2021) Phase evolution and thermochromism of vanadium oxide thin films grown at low substrate temperatures during magnetron sputtering. Ceram Int 47:15491–15499

    Article  CAS  Google Scholar 

  95. Zhu YT, Guan XM, Yang ZH, Xu X (2021) Regulation of component transformation in MOF-derived vanadium oxide@C spindles for high-performance electromagnetic wave absorption. J Alloy Compd 865:158886

    Article  CAS  Google Scholar 

  96. Zou YL, Chen C, Sun YJ, Gan SC, Dong LB, Zhao JH, Rong JH (2021) Flexible, all-hydrogel supercapacitor with self-healing ability. Chem Eng J 418:128616

    Article  CAS  Google Scholar 

  97. Zuo PX, Du J, Yu YF, Chen AB (2021) N-doped mesoporous thin carbon tubes obtained by exhaust directional deposition for supercapacitor. Chem Eng Sci 240:116651

    Article  CAS  Google Scholar 

  98. Najafi MD, Kowsari E, Naderi HR, Chinnappan A, Ramakrishna S, Ehsani A, Shokravi A (2021) Functionalization of graphene oxide via chromium complexes coordinated on 5-aminopyridine-2-carboxylic acid as a symmetric supercapacitor electrode materials in energy storage devices. Compos Sci Technol 211:108844

    Article  CAS  Google Scholar 

  99. Palsaniya S, Nemade HB, Dasmahapatra AK (2021) Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor. J Phys Chem Solids 154:110081

    Article  CAS  Google Scholar 

  100. Payami E, Teimuri-Mofrad R (2021) A novel ternary Fe3O4@Fc-GO/PANI nanocomposite for outstanding supercapacitor performance. Electrochim Acta 383:138296

    Article  CAS  Google Scholar 

  101. Polat S, Atun G (2021) Enhanced cycling stability performance for supercapacitor application of NiCoAl-LDH nanofoam on modified graphite substrate. J Ind Eng Chem 99:107–116

    Article  CAS  Google Scholar 

  102. Vijay VS, Varghese R, Sakunthala A, Rajesh S, Vidhya B (2021) Highly crystalline V2O5 and V6O13 thin films by PLD and a study on morphology transition of V2O5 by post annealing. Vacuum 187:110097

    Article  CAS  Google Scholar 

  103. Wan ZD, Zou ZG, Wang JL, Long F, Wu Y (2018) Synthesis and electrochemical properties of flower-like Na-doped V6O13 cathode materials for Li-ion batteries. Int J Electrochem Sc 13:6565–6576

    Article  CAS  Google Scholar 

  104. Wang BY, Qiu WH, Liu QG (1992) The characteristics of different inserting stages of lithium ions into V6O13 cathode. Solid State Ionics 52:363–365

    Article  CAS  Google Scholar 

  105. Xue KH, Yang H, Zhou YM, Li G, Skotheim TA, Lee HS, Yang XQ, Mcbreen J (1993) A study of the Zn/V6O13 secondary battery. J Electrochem Soc 140:3413–3417

    Article  CAS  Google Scholar 

  106. Wu XY, Zou ZG, Li SY, Yang Q (2018) Solvothermal preparation of Al/Fe-doped V6O13 as cathode materials for lithium-ion batteries with enhanced electrochemical performance. J Electroanal Chem 829:20–26

    Article  CAS  Google Scholar 

  107. Wu XY, Zou ZG, Li SY, Zhang YJ (2019) Solvothermal preparation of Ga-doped V6O13 nanowires as cathode materials for lithium-ion batteries. Ionics 25:4557–4565

    Article  CAS  Google Scholar 

  108. Yu DY, Qiu WH, Liu QG, Yang LL, Qiu B, Liang WH (1992) Ambient-temperature polymer electrolyte secondary Li/V6O13 battery. Synthetic Met 47:1–7

    Article  CAS  Google Scholar 

  109. Wu X, Zou Z, Li S, Wang Z (2019) Simple synthesis and electrochemical performance of V6O13 cathode materials as lithium-ion batteries. Ionics 25:1413–1418

    Article  CAS  Google Scholar 

  110. Zeng H, Tang Y, Zou W, Wang C, Tao H, Wu Y (2021) V6O13 nanobelts for simultaneous detection of Cd(II) and Pb(II) in water. Acs Applied Nano Materials 4:4654–4664

    Article  CAS  Google Scholar 

  111. Vernardou D, Apostolopoulou M, Louloudakis D, Spanakis E, Katsarakis N, Koudoumas E, McGrath J, Pemble ME (2014) Electrochemical properties of opal-V6O13 composites. J Alloy Compd 586:621–626

    Article  CAS  Google Scholar 

  112. Zhang S, Zou Z, Zhang H, Liu J, Zhong S (2021) Al/Ga co-doped V6O13 nanorods with high discharge specific capacity as cathode materials for lithium-ion batteries. J Electroanal Chem 890:115220

    Article  CAS  Google Scholar 

  113. Zhang X, Sun X, Li X, Hu X, Cai S, Zheng C (2021) Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries, Journal of Energy. Chemistry 59:343–363

    Google Scholar 

  114. Hou JF, Gao JF, Kong LB (2021) A crystalline nickel vanadium oxide@amorphous cobalt boride nanocomposites with enhanced specific capacity for hybrid supercapacitors. Electrochim Acta 377:138086

    Article  CAS  Google Scholar 

  115. Fu J, Davis TP, Kumar A, Richardson IM, Hermans MJM (2021) Characterisation of the influence of vanadium and tantalum on yttrium-based nano-oxides in ODS Eurofer steel. Mater Charact 175:111072

    Article  CAS  Google Scholar 

  116. Lee HJ, Wang D, Kim TH, Jung DH, Kil TH, Lee KS, Choi HJ, Baek SH, Yoon E, Choi WJ, Baik JM (2021) Wide-temperature (up to 100 degrees C) operation of thermostable vanadium oxide based microbolometers with Ti/MgF2 infrared absorbing layer for long wavelength infrared (LWIR) detection. Appl Surf Sci 547:149142

    Article  CAS  Google Scholar 

  117. Mateos-Nava RA, Rodriguez-Mercado JJ, Alvarez-Barrera L, Garcia-Rodriguez MD, Altamirano-Lozano MA (2021) Vanadium oxides modify the expression levels of the p21, p53, and Cdc25C proteins in human lymphocytes treated in vitro. Environ Toxicol 36(8):1536–1543

    Article  CAS  PubMed  Google Scholar 

  118. Zhang W, Peng J, Hua WB, Liu Y, Wang JS, Liang YR, Lai WH, Jiang Y, Huang Y, Zhang W, Yang HL, Yang YG, Li LN, Liu ZJ, Wang L, Chou SL (2021) Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv Energy Mater 11:2100757

    Article  CAS  Google Scholar 

  119. Tao YX, Huang DK, Chen H, Luo YZ (2021) Electrochemical generation of hydrated zinc vanadium oxide with boosted intercalation pseudocapacitive storage for a high-rate flexible zinc-ion battery. Acs Appl Mater Inter 13:16576–16584

    Article  CAS  Google Scholar 

  120. Irie H, Yoda M, Takashima T, Osaki J (2021) Silver cocatalyst-concentration dependence of overall water splitting performance over silver-inserted solid-state heterojunction photocatalyst composed of zinc rhodium oxide and bismuth vanadium oxide. Appl Catal B: Environ 284:119744

    Article  CAS  Google Scholar 

  121. Ju B, Song HJ, Yoon H, Kim DW (2021) Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries. Chem Eng J 420:130528

    Article  CAS  Google Scholar 

  122. Kim TY, Park S, Kim BJ, Heo SB, Yu JH, Shin JS, Hong JA, Kim BS, Kim YD, Park Y, Kang SJ (2021) Dual-functional quantum-dots light emitting diodes based on solution processable vanadium oxide hole injection layer. Sci Rep-Uk 11:1700

    Article  CAS  Google Scholar 

  123. Liang YM, Sokolov MN, Mikhaylov MA, Ibrahim H, Goldmann M, Choua S, Le Breton N, Boudon C, Badets V, Bonnefont A, Ruhlmann L (2021) A 3D electropolymerized thin film based on an isoporphyrin and on a pyridine end-decorated molybdenum(II) halide cluster: photoelectrochemical and impedance properties. Electrochim Acta 388:138493

    Article  CAS  Google Scholar 

  124. Tailor NK, Senanayak SP, Abdi-Jalebi M, Satapathi S (2021) Low-frequency carrier kinetics in triple cation perovskite solar cells probed by impedance and modulus spectroscopy. Electrochim Acta 386:138430

    Article  CAS  Google Scholar 

  125. Li H-Y, Wei C, Wang L, Zuo Q-S, Li X, Xie B (2015) Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors. J Mater Chem A 3:22892–22901

    Article  CAS  Google Scholar 

  126. LapaPN, Kassabian G, Torres F, Salev P, Lee MH, del Valle J, Schuller IK (2020) Acoustoelectric drag current in vanadium oxide films. J Appl Phys 128

  127. Liu TR, Chang YC, Bayeh AW, Wang KC, Chen HY, Wang YM, Chiang TC, Tang MT, Tseng SC, Huang HC, Wang CH (2020) Synergistic effects of niobium oxide-niobium carbide-reduced graphene oxide modified electrode for vanadium redox flow battery. J Power Sources 473:228590

    Article  CAS  Google Scholar 

  128. Mu H, Zhang Y, Tong XQ, Chen W, He BB, Shu LC, Ruan XB, Zhang X, Gao F, Cao W, Zou ZX (2021) Impedance-based stability analysis methods for DC distribution power system with multivoltage levels. Ieee T Power Electr 36:9193–9208

    Article  Google Scholar 

  129. Zou ZG, Zhang SC, Li SY (2020) A review of the preparation and performance improvement of V6O13 as a cathode material for lithium-ion batteries. Mater Technol 35:300–315

    Article  CAS  Google Scholar 

  130. He J, Long F, Peng D, Wu X, Mo S, Zou Z (2017) Ribbon-like Cu doped V6O13 as cathode material for high-performance lithium ion batteries. J Wuhan Univ Technol Mater Sci Ed 32:1397–1401

    Article  CAS  Google Scholar 

  131. Zhang SC, Zou ZG, Zhang HH, Liu J, Zhong SL (2021) Al/Ga co-doped V6O13 nanorods with high discharge specific capacity as cathode materials for lithium-ion batteries. J Electroanal Chem 890:7

    Article  Google Scholar 

  132. Tian X, Xu X, He L, Wei Q, Yan M, Xu L, Zhao Y, Yang C, Mai L (2014) Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J Power Sources 255:235–241

    Article  CAS  Google Scholar 

  133. Xu N, Ma XX, Wang MF, Qian T, Liang JQ, Yang WL, Wang Y, Hu J, Yan CL (2016) Stationary full Li-ion batteries with interlayer-expanded V6O13 cathodes and lithiated graphite anodes. Electrochim Acta 203:171–177

    Article  CAS  Google Scholar 

  134. Zhai T, Lu XH, Ling YC, Yu MH, Wang GM, Liu TY, Liang CL, Tong YX, Li Y (2014) A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13-x. Adv Mater 26:5869–5875

    Article  CAS  PubMed  Google Scholar 

  135. Liu TY, Finn L, Yu MH, Wang HY, Zhai T, Lu XH, Tong YX, Li Y (2014) Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett 14:2522–2527

    Article  CAS  PubMed  Google Scholar 

  136. Wu Y-D, Zhang G-H, Xu R, Wang Y, Chou K-C (2019) Fabrication of pure V2O3 powders by reducing V2O5 powders with CO-CO2 mixed gases. Ceram Int 45:2117–2123

    Article  CAS  Google Scholar 

  137. Zhang S, Zou Z, Lv T, Li S, Zhan Y (2020) Excellent cyclic stability of pre-lithiated VO2(B) nanorods as a cathode material for lithium ion batteries. Int J Electrochem Sc 15:7203–7213

    Article  Google Scholar 

  138. Zhao D, Zhu Q, Chen D, Li X, Yu Y, Huang X (2018) Nest-like V3O7 self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon. J Mater Chem A 6:16475–16484

    Article  CAS  Google Scholar 

  139. Yang W, Zeng J, Xue Z, Ma T, Chen J, Li N, Zou H, Chen S (2020) Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor. Ionics 26:961–970

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (No. 51562006) and the Guangxi Distinguished Experts Special Fund (No. 2019B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengguang Zou.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, W., Zhang, S., Peng, X. et al. The prospected application of V6O13 in lithium-ion supercapacitors based on its researches in lithium-ion batteries and supercapacitors. Ionics 27, 4961–4981 (2021). https://doi.org/10.1007/s11581-021-04271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04271-y

Keywords

Navigation