Skip to main content
Log in

Examination of hybrid electrode material for energy storage device supercapacitor under various electrolytes

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Energy storage is one of the leading problems being faced globally, due to the population explosion in recent times. The conventional energy sources that are available are on the verge of extinction, hence researchers are keen on developing a storage system that will face the upcoming energy needs. Supercapacitors, also known as ultracapacitors or electrochemical capacitors, are advanced energy storage devices characterised by high power density and rapid charge–discharge cycles. Unlike traditional batteries, supercapacitors store energy through electrostatic separation, offering quick energy release and prolonged operational life. They hold exceptional performance in various applications, from portable electronics to electric vehicles, where their ability to deliver bursts of energy efficiently complements or replaces conventional energy storage solutions. Ongoing research focuses on enhancing energy density and overall efficiency, positioning supercapacitors as pivotal components in the evolving landscape of energy storage technologies. A novel electrode material of NiO/CuO/Co3O4/rGO was synthesized which when used as a supercapacitor, the highest value of CS is 873.14 F/g which is achieved for a current density of 1 A/g under with an energy density of 190 Wh/kg and the highest power density of 2.5 kW/kg along with 87.3% retention after 5000 GCD cycles under 1 M KOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available on request due to privacy or other restrictions.

References

  1. Jennifer PJS, Muthupandi S, Ruban MJR, Annie Canisius D, Prabhu AP, Madhavan J, Raj MVA (2023) Exploring a novel counter electrode material (NiO/Co3O4/CuO anchored on rGO) as an efficient replacement for platinum in dye-sensitized solar cells. Mater Lett. https://doi.org/10.1016/j.matlet.2023.134950

    Article  Google Scholar 

  2. Atta MM, Abdel Maksoud MIA, Sallam OI, Awed AS (2021) Gamma irradiation synthesis of wearable supercapacitor based on reduced graphene oxide/cotton yarn electrode. J Mater Sci: Mater Electron 32:3688–3698. https://doi.org/10.1007/s10854-020-05114-8

    Article  CAS  Google Scholar 

  3. Taha EO, Alyousef HA, Dorgham AM, Hemeda OM, Zakaly HMH, Noga P, Abdelhamied MM, Atta MM (2023) Electron beam irradiation and carbon nanotubes influence on PVDF-PZT composites for energy harvesting and storage applications: Changes in dynamic-mechanical and dielectric properties. Inorg Chem Commun 151:110624. https://doi.org/10.1016/J.INOCHE.2023.110624

    Article  CAS  Google Scholar 

  4. Atta MM, Zakaly HMH, Almousa N, Abdel Reheem AM, Madani M, Kandil UF, Henaish AMA, Taha EO (2023) Correction: nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite. Carbon Lett 33:2027. https://doi.org/10.1007/s42823-023-00574-4

    Article  Google Scholar 

  5. Atta MM, Ashry HA, Nasr GM, Abd El-Rehim HA (2021) Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide. Int J Miner Metall Mater 28:1726–1734. https://doi.org/10.1007/s12613-020-2146-5

    Article  CAS  Google Scholar 

  6. Atta MM, Habieb ME, Mohamed MAEH, Lotfy DM, Taha EO (2022) Radiation-assisted reduction of graphene oxide by aloe vera and ginger and their antioxidant and anti-inflammatory roles against male mice liver injury induced by gamma radiation. New J Chem 46:4406–4420. https://doi.org/10.1039/D1NJ05000A

    Article  CAS  Google Scholar 

  7. Xiong W, Yin H, Wu T, Li H (2023) Challenges and opportunities of transition metal oxides as electrocatalysts. Chem—Eur J 29:e202202872

    Article  CAS  PubMed  Google Scholar 

  8. Wu C, Xiong W, Li H (2023) A novel synthesis of carbon foam@ Fe2O3 via hydrolysis-driven emulsion polymerization for supercapacitor electrodes. Carbon Lett 33:2327–2334

    Article  Google Scholar 

  9. Wu C, Xing X, Xiong W, Li H (2023) Cooperative regulation of hard template and emulsion self-assembly to the synthesis of N/O co-doped mesoporous hollow carbon nanospheres for supercapacitors. Diam Relat Mater 139:110273

    Article  CAS  Google Scholar 

  10. Zhai S, Chen Y (2022) Graphene-based fiber supercapacitors. Acc Mater Res 3:922–934. https://doi.org/10.1021/accountsmr.2c00087

    Article  CAS  Google Scholar 

  11. Atta MM, Zakaly HMH, Almousa N, Abdel Reheem AM, Madani M, Kandil UF, Henaish AMA, Taha EO (2023) Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite. Carbon Lett 33:1639–1648. https://doi.org/10.1007/S42823-023-00548-6/METRICS

    Article  Google Scholar 

  12. AnnieCanisius D, Jennifer PJS, Ruban MJR, Varghese D, Muthupandi S, Madhavan J, Raj MVA (2023) Analysing the bifunctional ability of CuO/BiOBr/rGO as an electrode for non-enzymatic glucose sensor and supercapacitor. Mater Lett 346:134546. https://doi.org/10.1016/J.MATLET.2023.134546

    Article  CAS  Google Scholar 

  13. Rendale SS, Beknalkar SA, Teli AM, Shin JC, Bhat TS (2023) Hydrothermally synthesized aster flowers of MnCo2O4 for development of high-performance asymmetric coin cell supercapacitor. J Electroanal Chem 932:117253. https://doi.org/10.1016/j.jelechem.2023.117253

    Article  CAS  Google Scholar 

  14. Shah MZU, Sajjad M, Hou H, Ur Rahman S, Mahmood A, Aziz U, Shah A (2022) A new CuO/TiO2 nanocomposite: an emerging and high energy efficient electrode material for aqueous asymmetric supercapacitors. J Energy Storage 55:105492. https://doi.org/10.1016/j.est.2022.105492

    Article  Google Scholar 

  15. Zhao L, Jiang C, Chao J, Cai Z, Chen Y, Liang X, Zhong G, Hu B, Miao L, Liao W (2023) Rational design of nickel oxide/cobalt hydroxide heterostructure with configuration towards high-performance electrochromic-supercapacitor. Appl Surf Sci. https://doi.org/10.1016/J.APSUSC.2022.155279

    Article  Google Scholar 

  16. Patrick JSJ, Muthupandi S, Niranjana SR, Raja Ruban MJ, Prathap S, Nimbus B, Swu T, Antony Raj MV (2023) A novel synthesis strategy for hybrid quaternary rGO/MnO2/NiO/CuO nanocomposite as electrode for enduring symmetric supercapacitor fabrication. Synth Met 293:117282. https://doi.org/10.1016/j.synthmet.2023.117282

    Article  CAS  Google Scholar 

  17. Suzan Jennifer PJ, Muthupandi S, Niranjana SR, Raja Ruban MJ, Madhavan J, Prathap S, Antony Raj MV (2022) Investigation of MnO2/CuO/rGO ternary nanocomposite as electrode material for high-performance supercapacitor. Inorg Chem Commun 146:110218. https://doi.org/10.1016/j.inoche.2022.110218

    Article  CAS  Google Scholar 

  18. Suzan Jennifer PJ, Patrick Muthupandi S, Raja Ruban MJ, Madhavan J, Prathap S, Niranjana SR, Antony Raj MV (2022) Interlacing rod and sphere morphology of MnO2 in RGO/NiO/MnO2 ternary nanocomposites for supercapacitive applications. J Electrochem Soc. https://doi.org/10.1149/1945-7111/aca8d0

    Article  Google Scholar 

  19. Suzan Jennifer PJ, Muthupandi S, Raja Ruban MJ, Johxy C, Madhavan J, Prathap S, Antony Raj MV (2022) Temperature-dependent supercapacitive behaviour of cobalt oxide (Co3O4) nanospheres under electrolytes with different pH. Inorg Chem Commun 144:109884. https://doi.org/10.1016/j.inoche.2022.109884

    Article  CAS  Google Scholar 

  20. Jennifer PJS, Muthupandi S, Niranjana SR, Ruban MJR, Varghese D, Madhavan J, Prathap S, Raj MVA (2023) Exploring ternary hybrid nanocomposite of NiO@CuO embedded on reduced graphene oxide as supercapacitor electrode. J Mater Sci: Mater Electron 34:727. https://doi.org/10.1007/s10854-023-10108-3

    Article  CAS  Google Scholar 

  21. Suzan Jennifer JP, Muthupandi S, Raja Ruban MJ, Madhavan J, Prathap S, Niranjana SR, Antony Raj MV (2022) Interlacing rod and sphere morphology of MnO2 in RGO/NiO/MnO2 ternary nanocomposites for supercapacitive applications. J Electrochem Soc 169:123505. https://doi.org/10.1149/1945-7111/aca8d0

    Article  CAS  Google Scholar 

  22. Hao C, Chen L, Zhang Y, Zheng X, Li S, Min G, Ci L (2021) AgxMn8O16Cathode enables high-performance aqueous Li-ion hybrid supercapacitors. Energy Fuels 35:15101–15107. https://doi.org/10.1021/ACS.ENERGYFUELS.1C01771/SUPPL_FILE/EF1C01771_SI_001.PDF

    Article  CAS  Google Scholar 

  23. Muthupandi S, Jennifer PJS, Ruban MJR, Prathap S, Madhavan J, Raj MVA, Sagayaraj P (2023) Photocatalytic application of zinc oxide synthesized via sol gel route. AIP Conf Proc 2770:080003. https://doi.org/10.1063/5.0140755

    Article  CAS  Google Scholar 

  24. Muthupandi S, Jennifer PJS, Ruban MJR, Prathap S, Madhavan J, Raj MVA, Sagayaraj P (2023) Synthesis and characterization and photocatalytic application of nickel oxide with pine-cone morphology. AIP Conf Proc 2770:080002. https://doi.org/10.1063/5.0140416

    Article  CAS  Google Scholar 

  25. Smok W, Tański T, Drygała A, Podwórny J (2022) Facile route to prepare hybrid TiO2-SnO2 DSSCs. Appl Surf Sci 605:154850. https://doi.org/10.1016/J.APSUSC.2022.154850

    Article  CAS  Google Scholar 

  26. Suzan Jennifer PJ, Muthupandi S, Raja Ruban MJ, Prathap S, Madhavan J, Antony Raj MV (2023) A quaternary nanocomposite as an efficient counter electrode for Pt-free Dye-sensitized solar cells (DSSC). Mater Lett 340:134151. https://doi.org/10.1016/J.MATLET.2023.134151

    Article  Google Scholar 

  27. Beladi-Mousavi SM, Salinas G, Antonatos N, Mazanek V, Garrigue P, Sofer Z, Kuhn A (2022) Fine-tuning the functionality of reduced graphene oxide via bipolar electrochemistry in freestanding 2D reaction layers. Carbon N Y 191:439–447

    Article  CAS  Google Scholar 

  28. Ahuja P, Ujjain SK, Kanojia R (2018) Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor. Appl Surf Sci 427:102–111

    Article  CAS  Google Scholar 

  29. Sun X, Zheng D, Pan F, Qin C, Li Y, Wang Z (2021) 3D nanoporous Ni@ NiO/metallic glass sandwich electrodes without corrosion cracks for flexible supercapacitor application. Appl Surf Sci 545:149043

    Article  CAS  Google Scholar 

  30. Prikhodko N, Yeleuov M, Abdisattar A, Askaruly K, Taurbekov A, Tolynbekov A, Rakhymzhan N, Daulbayev C (2023) Enhancing supercapacitor performance through graphene flame synthesis on nickel current collectors and active carbon material from plant biomass. J Energy Storage 73:108853. https://doi.org/10.1016/J.EST.2023.108853

    Article  Google Scholar 

  31. Muthupandi S, Jennifer PJS, Bernadsha SB, Raj MVA, Madhavan J, Rajkumar MA, Lawrence KL, Prathap S (2023) Growth and characterization of pure and doped LHPCL single crystal. AIP Conf Proc 2770:020001. https://doi.org/10.1063/5.0140991

    Article  CAS  Google Scholar 

  32. Ruban MJR, Muthupandi S, Jennifer PJS, Raj MVA, Madhavan J, Prathap S, Cynthia S (2023) Synthesis and characterization of zinc sulfide. AIP Conf Proc 2770:070002. https://doi.org/10.1063/5.0140473

    Article  CAS  Google Scholar 

  33. Varghese D, Ruban MJR, Jennifer PJS, AnnieCanisius D, Chakko S, Muthupandi S, Madhavan J, Raj MVA (2023) Comprehensive analysis of NiFe 2 O 4/MWCNTs nanocomposite to degrade a healthcare waste–tetracycline. RSC Adv 13:28339–28361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang W, Yang Y, Xia R, Li Y, Zhao J, Lin L, Cao J, Wang Q, Liu Y, Guo H (2020) Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors. Carbon N Y 162:114–123

    Article  CAS  Google Scholar 

  35. Thareja S, Kumar A (2021) In situ wet synthesis of N-ZnO/N-rGO nanohybrids as an electrode material for high-performance supercapacitors and simultaneous nonenzymatic electrochemical sensing of ascorbic acid, dopamine, and uric acid at their interface. J Phys Chem C 125:24837–24848. https://doi.org/10.1021/acs.jpcc.1c08413

    Article  CAS  Google Scholar 

  36. Wu Y, Zhao W, Qiang Y, Chen Z, Wang L, Gao X, Fang Z (2020) π–π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: synthesis and anti-corrosion application. Carbon N Y 159:292–302. https://doi.org/10.1016/j.carbon.2019.12.047

    Article  CAS  Google Scholar 

  37. Plebankiewicz I, Bogdanowicz KA, Iwan A (2020) Photo-rechargeable electric energy storage systems based on silicon solar cells and supercapacitor-engineering concept. Energies 2020(13):3867. https://doi.org/10.3390/EN13153867

    Article  Google Scholar 

  38. Li Z, Hu B, Yu R, Tian T, Guo Z, Mu J, Zhang X, Wang G, Liu X, Liu A (2023) Hollow cobalt selenide nanospheres wrapped with reduced graphene oxide nanosheets as electrodes for hybrid supercapacitor. Appl Surf Sci. https://doi.org/10.1016/J.APSUSC.2022.155237

    Article  Google Scholar 

  39. Zarach Z, Nowak AP, Trzciński K, Gajowiec G, Trykowski G, Sawczak M, Łapiński M, Szkoda M (2023) Influence of hydrochloric acid concentration and type of nitrogen source on the electrochemical performance of TiO2/N-MoS2 for energy storage applications. Appl Surf Sci. https://doi.org/10.1016/J.APSUSC.2022.155187

    Article  Google Scholar 

  40. Zhang YX, Kuang M, Wang JJ (2013) Mesoporous CuO–NiO micropolyhedrons: facile synthesis, morphological evolution and pseudocapcitive performance. CrystEngComm 16:492–498. https://doi.org/10.1039/C3CE41744A

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Antony Raj Moses or Manikandan Ayyar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, J.S.J., Subrayapillai Ramakrishna, N., Sankar, M. et al. Examination of hybrid electrode material for energy storage device supercapacitor under various electrolytes. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00713-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00713-5

Keywords

Navigation