Skip to main content
Log in

Study on the synthesis of NiCo2O4 as lithium-ion battery anode using spent LiNi0.6Co0.2Mn0.2O2 batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, the recycling of spent LiNi0.6Co0.2Mn0.2O2 lithium-ion battery cathode materials was achieved successfully combined with the synthesis of NiCo2O4 anode material. Hydrometallurgical technology was adopted in the recycling of spent LiNi0.6Co0.2Mn0.2O2 lithium-ion battery cathode materials, and sol–gel method was adopted in the synthesis of NiCo2O4 anode material. Scanning electron microscopy (SEM) results showed that NiCo2O4 anode material is composed of 22–25-nm nanospheres. In the rate test, NiCo2O4 anode material showed excellent rate performance: the corresponding discharge capacities were stable at 1257, 1160, 1014, 837, and 703 mAh·g−1 when the current density was 100, 200, 300, 400, and 500 mA·g−1, respectively. When the current density returned to 100 mA·g−1, the average capacity could be restored to 1025 mAh·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma JJ, Ni SB, Zhang JC, Yang XL et al (2015) The electrochemical performance of nickel chromium oxide as a new anode material for lithium-ion batteries. Electrochim Acta 176:1420–1426. https://doi.org/10.1016/j.electacta.2015.07.071

    Article  CAS  Google Scholar 

  2. Xiang JY, Hu C, Chen LY, Zhang D et al (2016) Enhanced performance of Zn (II)-doped lead-acid batteries with electrochemical active carbon in negative mass. J Power Sources 328:8–14. https://doi.org/10.1016/j.jpowsour.2016.07.113

    Article  CAS  Google Scholar 

  3. Sobianowska-Turek A (2018) Hydrometallurgical recovery of metals: Ce, La Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste Manage 77:213–219. https://doi.org/10.1016/j.wasman.2018.03.046

    Article  CAS  Google Scholar 

  4. Zhang NS, Guo GH, He BW et al (2020) Study on the performance of MnO2-MoO3 composite as lithium-ion battery anode using spent Zn-Mn batteries as manganese source. J Solid State Electrochem 24(3):591–599. https://doi.org/10.1007/s10008-020-04496-3

    Article  CAS  Google Scholar 

  5. Cai S, Wang G, Jiang M et al (2017) Template-free fabrication of porous CuCo2O4 hollow spheres and their application in lithium-ion batteries. J Solid State Electrochem 21(4):1129–1136. https://doi.org/10.1007/s10008-016-3414-1

    Article  CAS  Google Scholar 

  6. Zhang Z, Yu M, Yang B et al (2020) Regeneration of Al-doped LiNi1/3Co1/3Mn1/3O2 cathode material via a sustainable method from spent Li-ion batteries. Mater Res Bull 126:110855. https://doi.org/10.1016/j.materresbull.2020.110855

    Article  CAS  Google Scholar 

  7. Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137(9):3140–3156. https://doi.org/10.1021/ja507828x

    Article  CAS  PubMed  Google Scholar 

  8. Zhu M, Liu Z, Li J et al (2020) Electric vehicle battery capacity allocation and recycling with downstream competition. Eur J Oper Res 283(1):365–379. https://doi.org/10.1016/j.ejor.2019.10.040

    Article  Google Scholar 

  9. Zhang J, Gu J, He H et al (2017) High-capacity nano-Si@SiOx@C anode composites for lithium-ion batteries with good cyclic stability. J Solid State Electrochem 21(8):2259–2267. https://doi.org/10.1007/s10008-017-3578-3

    Article  CAS  Google Scholar 

  10. Zeng X, Li J, Liu L (2015) Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew Sustain Energy Rev 52:1759–1767. https://doi.org/10.1016/j.rser.2015.08.014

    Article  CAS  Google Scholar 

  11. Xiao LN, Ding X, Tang ZF et al (2018) Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. J Solid State Electrochem. 22(11):2431–2442. https://doi.org/10.1007/s10008-018-4053-5

    Article  CAS  Google Scholar 

  12. Xiang ZM, Chen YX, Li J, Xia XH, He YD, Liu HB (2017) Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium-ion batteries. J Solid State Electrochem 21(8):2425–2432. https://doi.org/10.1007/s10008-017-3566-7

    Article  CAS  Google Scholar 

  13. Wang C, Wang S, Yan F (2020) Recycling of spent lithium-ion batteries: selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage 114:253–262. https://doi.org/10.1016/j.wasman.2020.07.008

    Article  CAS  Google Scholar 

  14. Li J, Wang G, Xu Z (2016) Environmentally-friendly oxygen-free roasting wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2 graphite lithium batteries. J Hazard Mater 302:97–104. https://doi.org/10.1016/j.jhazmat.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  15. Meshram P, Pandey BD, Mankhand TR, Deveci H et al (2016) Acid baking of spent LIBs for selective recovery of major metals: a two-step process. J Ind Eng Chem 43:117–126. https://doi.org/10.1016/j.jiec.2016.07.056

    Article  CAS  Google Scholar 

  16. Meshram P, Pandey BD, Mankhand TR (2015) Recovery of valuable metals from cathodic active material of spent lithium-ion batteries: leaching and kinetic aspects. Waste Manage 45:306–313. https://doi.org/10.1016/j.wasman.2015.05.027

    Article  CAS  Google Scholar 

  17. Diekmann J, Hanisch C, Froböse L et al (2017) Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. J Electrochem Soc 164(1):A6184–A6191. https://doi.org/10.1149/2.0271701jes

    Article  CAS  Google Scholar 

  18. Wang SN, Hua WB, Missyul A et al (2021) Kinetic control of long-range cationic ordering in the synthesis of layered Ni-rich oxides. Adv Funct Mater 31(19):2009949. https://doi.org/10.1002/adfm.202009949

    Article  CAS  Google Scholar 

  19. Hua WB, Wang SN, Knapp M et al (2019) Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat Commun 10(1):5365. https://doi.org/10.1038/s41467-019-13240-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu YC, Liu MC (2017) Reproduction of Li battery LiNixMnyCo1−x−yO2 positive electrode material from the recycling of waste battery. Int J Hydrog Energy 42(29):18189–18195. https://doi.org/10.1016/j.ijhydene.2017.04.155

    Article  CAS  Google Scholar 

  21. He LP, Sun SY, Song XF, Yu JG (2017) Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manage 64:171–181. https://doi.org/10.1016/j.wasman.2017.02.011

    Article  CAS  Google Scholar 

  22. Garapati MS, Sundara R (2020) Retracting interphasial stored Li+ ions by transition metal/metal carbide nanoparticles for enhanced Li+ ion storage capacity. J Colloid Interface Sci 582:1213–1222. https://doi.org/10.1016/j.jcis.2020.08.109

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Y, Seifert HJ, Shi H et al (2019) 3D silicon/graphite composite electrodes for high-energy lithium-ion batteries. Electrochim Acta 317:502–508. https://doi.org/10.1016/j.electacta.2019.05.064

    Article  CAS  Google Scholar 

  24. Bai A, Wang L, Li J (2015) Composite of graphite/phosphorus as anode for lithium-ion batteries. J Power Sources 289:100–104. https://doi.org/10.1016/j.jpowsour.2015.04.168

    Article  CAS  Google Scholar 

  25. Han H, Park H, Kil KC, Jeon Y, Ko Y (2015) Microstructure control of the graphite anode with a high density for Li-ion batteries with high energy density. Electrochim Acta 166:367–371. https://doi.org/10.1016/j.electacta.2015.03.037

    Article  CAS  Google Scholar 

  26. Chae S, Choi SH, Kim N et al (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem-Int Edit 59(1):110–135. https://doi.org/10.1002/anie.201902085

    Article  CAS  Google Scholar 

  27. Markevich E, Salitra G, Aurbach D (2016) Low temperature performance of amorphous monolithic silicon anodes: comparative study of silicon and graphite electrodes. J Electrochem Soc 163(10):A2407–A2412. https://doi.org/10.1149/2.1291610jes

    Article  CAS  Google Scholar 

  28. Cheng Q, Zhang Y (2018) Multi-channel graphite for high-rate lithium-ion battery. J Electrochem Soc 165(5):A1104–A1109. https://doi.org/10.1149/2.1171805jes

    Article  CAS  Google Scholar 

  29. Zhang J, Ren H, Wang J (2016) Engineering of multi-shelled SnO2 hollow microspheres for highly stable lithium-ion batteries. J Mater Chem A 4(45):17673–17677. https://doi.org/10.1039/c6ta07717j

    Article  CAS  Google Scholar 

  30. Xu BQ, Hu BK, Zhang QH et al (2019) Phase-separation-driven formation of nickel-cobalt oxide nanotubes as high-capacity anode materials for lithium-ion batteries. Mater Res Lett 7(9):368–375. https://doi.org/10.1080/21663831.2019.1613267

    Article  CAS  Google Scholar 

  31. Chen F, Zhang WX, Cheng FR, Yang ZH et al (2018) Stepwise co-precipitation to the synthesis of urchin-like NiCo2O4 hollow nanospheres as high performance anode material. J Appl Electrochem 48:1095–1104. https://doi.org/10.1007/s10800-018-1213-3

    Article  CAS  Google Scholar 

  32. Solmaz R, Karahan BD, Keles O (2020) Fabrication of nickel manganese cobalt oxide (NMCO) anodes for lithium-ion batteries via hydrothermal process. J Appl Electrochem 50(10):1079–1089. https://doi.org/10.1007/s10800-020-01462-9

    Article  CAS  Google Scholar 

  33. Ma M, Zhang J, Shen W et al (2019) Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium-ion diffusion rate. J Solid State Electrochem 23:2969–2977. https://doi.org/10.1007/s10008-019-04390-7

    Article  CAS  Google Scholar 

  34. Wang G, Zhang M, Deng Z et al (2020) Poplar branch bio-template synthesis of mesoporous hollow Co3O4 hierarchical architecture as an anode for long-life lithium-ion batteries. Ceram Int 46(18):29033–29040. https://doi.org/10.1016/j.ceramint.2020.08.074

    Article  CAS  Google Scholar 

  35. Li Y, Guan Q, Cheng J et al (2018) Carbon-coated hollow CoO microporous nanospheres synthesized by CoF2 as the intermediates as anode materials for lithium-ion batteries. Ionics 24(6):1587–1594. https://doi.org/10.1007/s11581-017-2336-y

    Article  CAS  Google Scholar 

  36. Zhang H, Tian BQ, Xue J, Ding GQ, Ji XM, Cao Y (2019) Hierarchical non-woven fabric NiO/TiO2 film as an efficient anode material for lithium-ion batteries. RSC Adv 9(43):24682–24687. https://doi.org/10.1039/c9ra04947a

    Article  CAS  Google Scholar 

  37. Wang MY, Huang Y, Zhang N et al (2018) A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chem Eng J 334:2383–2391. https://doi.org/10.1016/j.cej.2017.12.017

    Article  CAS  Google Scholar 

  38. Zhang M, Li D, Yang L et al (2020) Dendritic micro-nano NiCo2O4 anode material generated from chemical dealloying for high-performance lithium-ion batteries. Ionics 26(11):5385–5392. https://doi.org/10.1007/s11581-020-03726-y

    Article  CAS  Google Scholar 

  39. Huang XQ, Zhang WB, Zhou CJ et al (2020) N-doped carbon encapsulated CoMoO4 nanorods as long-cycle life anode for sodium-ion batteries. J Colloid Interface Sci 576:176–185. https://doi.org/10.1016/j.jcis.2020.05.017

    Article  CAS  PubMed  Google Scholar 

  40. Ni LS, Jia LL, Chen G et al (2018) Facile synthesis of porous FeCo2O4 nanowire arrays on flexible carbon cloth with superior lithium storage properties. J Phys Chem Solids 122:261–267. https://doi.org/10.1016/j.jpcs.2018.06.032

    Article  CAS  Google Scholar 

  41. Liu H, Wang XL, Xu H et al (2018) Controllable synthesis of nanostructured ZnCo2O4 as high-performance anode materials for lithium-ion batteries. RSC Adv 8(69):39377–39383. https://doi.org/10.1039/c8ra08066f

    Article  CAS  Google Scholar 

  42. Yang Y, Huang GY, Sun HY et al (2018) Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J Colloid Interface Sci 529:357–365. https://doi.org/10.1016/j.jcis.2018.06.039

    Article  CAS  PubMed  Google Scholar 

  43. Xu K, Yang J, Hu J (2018) Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors. J Colloid Interface Sci 511:456–462. https://doi.org/10.1016/j.jcis.2017.09.113

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Huang GY, Xie M, Xu SM, He YH (2016) Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps. Hydrometallurgy 165:358–369. https://doi.org/10.1016/j.hydromet.2015.11.015

    Article  CAS  Google Scholar 

  45. Ren QQ, Yu FD, Zheng LL, Yin BS, Wang ZB, Ke K (2019) Spinel (Ni0.4Co0.4Mn0.2)3O4 nanoparticles as conversion-type anodes for Li- and Na-ion batteries. Ceram Int 45(6):7552–7559. https://doi.org/10.1016/j.ceramint.2019.01.049

    Article  CAS  Google Scholar 

  46. Liang JL, Huang YF, Huang YZ et al (2020) Hydrothermal synthesis of urchin-like NiCo2O4/stereotaxically constructed graphene microspheres for ultrahigh-rate lithium and sodium storage. Powder Technol 380:115–125. https://doi.org/10.1016/j.powtec.2020.11.011

    Article  CAS  Google Scholar 

  47. Han C, Cao WQ, Cao MS (2020) Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries. Inorg Chem Front 7(21):4101–4112. https://doi.org/10.1039/d0qi00892c

    Article  CAS  Google Scholar 

  48. Liu MJ, Wang L, Mu YL, Ma JM, Zhao Y et al (2018) A novel NiCoMnO4 anode material: construction of nanosheet architecture and superior electrochemical performances. Scr Mater 146:13–17. https://doi.org/10.1016/j.scriptamat.2017.10.030

    Article  CAS  Google Scholar 

  49. Zhou JX, Li DL, Han JX et al (2019) Novel ternary transition metal oxide solid solution: mesoporous Ni-Mn-Co-O nanowire arrays as integrated anode for high-power lithium-ion battery. Dalton Trans 48(8):2741–2749. https://doi.org/10.1039/c8dt04612c

    Article  CAS  PubMed  Google Scholar 

  50. Zhao S, Guo J, Jiang F (2016) Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. J Alloy Compd 655:372–377. https://doi.org/10.1016/j.jallcom.2015.09.189

    Article  CAS  Google Scholar 

  51. Wang X, Qiao L, Sun X et al (2013) Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. J Mater Chem A 1(13):4173–4176. https://doi.org/10.1039/c3ta01640d

    Article  CAS  Google Scholar 

  52. Li NW, Shi Y, Yin YX (2018) A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem-Int Edit 57(6):1505–1509. https://doi.org/10.1002/anie.201710806

    Article  CAS  Google Scholar 

  53. Ding ZJ, Qin XY, You CH (2018) Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2 parallel CoCO3@rGO full cell study. Electrochim Acta 270:192–204. https://doi.org/10.1016/j.electacta.2018.03.041

    Article  CAS  Google Scholar 

  54. Wang Q, Wang Q, Zhang DA et al (2014) Core-shell α-Fe2O3@α-MoO3 nanorods as lithium-ion battery anodes with extremely high capacity and cyclability. Chem-Asian J 9(11):3299–3306. https://doi.org/10.1002/asia.201402809

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Guo, G., Zhu, J. et al. Study on the synthesis of NiCo2O4 as lithium-ion battery anode using spent LiNi0.6Co0.2Mn0.2O2 batteries. Ionics 27, 3793–3800 (2021). https://doi.org/10.1007/s11581-021-04172-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04172-0

Keywords

Navigation