Skip to main content

Advertisement

Log in

Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium ion diffusion rate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Transition metal oxides (TMOs), such as Fe3O4, Co3O4, and NiO, assume large lithium ion storage capacities, but suffer severe structure pulverization and rapid electrochemical performance fading during lithiation/delithiation cycling. In the work, the transition metal oxide particles are cladded and bridged with graphene oxide (GO) sheets forming GO/TMO composites with unique three-dimensional network structure. As anode for lithium ion battery, the as-assembled GO/TMO composites show superior reversible specific capacity, rate capability, and cycling stability over the corresponding bare TMOs. It is illustrated that the GO sheets tightly clad on the TMO particle surfaces can suppress the volume variation, prevent the structure pulverization of the particles, and promote the formation of stable solid electrolyte interphase film during the lithiation/delithiation processes, which afford consequently the GO/TMO composites with decent cycling stability and fast lithium ion diffusion rate and decent electrochemical kinetic properties. Therefore, it can be envisaged that to clad and bridge properly with GO sheets should be generally useful for improving the structure stability and the electrochemical performances of the anode materials undergoing the chemical reactive lithium ion storage mechanisms. In addition, the simple synthesis method and low production cost are beneficial to its practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahar Z-A, Masoud S-N, Azam S, Zahra Z-A (2018) Rare earth zirconate nanostructures: recent development on preparation and photocatalytic applications. J Alloys Compd 767:1164–1185

    Article  CAS  Google Scholar 

  2. Sahar Z-A, Zahra S, Masoud S-N (2019) Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. J Clean Prod 215:480–487

    Article  CAS  Google Scholar 

  3. Sahar Z-A, Sobhan M-D, Masoud S-N (2017) Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route. Sep Purif Technol 178:138–146

    Article  CAS  Google Scholar 

  4. Sahar Z-A, Maryam SM, Masoud S-N (2019) Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos Part B: Eng 167:643–653

    Article  CAS  Google Scholar 

  5. Sahar Z-A, Maryam SM, Masoud S-N (2019) Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J Clean Prod 222:103–110

    Article  CAS  Google Scholar 

  6. Sahar Z-A, Zahra S, Omid A, Masoud S-N (2019) Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material. J Alloys Compd 791:792–799

    Article  CAS  Google Scholar 

  7. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage-material. Science 276(5317):1395–1397

    Article  CAS  Google Scholar 

  8. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  PubMed  Google Scholar 

  9. Zhang JJ, Yu A (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull 60:823–838

    Article  CAS  Google Scholar 

  10. Pan Y, Zeng WJ, Li L, Zhang YZ, Dong YN, Ye K, Cheng K, Cao DX, Wang GL, Lucht BL (2018) Surfactant assisted, one-step synthesis of Fe3O4 nanospheres and further modified Fe3O4/C with excellent lithium storage performance. J Electroanal Chem 810:248–254

    Article  CAS  Google Scholar 

  11. Wang JX, Wang C, Zhen MM (2019) Template-free synthesis of multifunctional Co3O4 nanotubes as excellent performance electrode materials for superior energy storage. Chem Eng J 356:1–10

    Article  CAS  Google Scholar 

  12. Weng WS, Lin J, Du YC, Ge XF, Zhou XS, Bao JC (2018) Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J Mater Chem A 6(22):10168–10175

    Article  CAS  Google Scholar 

  13. Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    Article  CAS  PubMed  Google Scholar 

  14. Yin XJ, Zhi CW, Sun WW, Lv L-P, Wang Y (2019) Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J Mater Chem A 7(13):7800–7814

    Article  CAS  Google Scholar 

  15. Kang Y-M, Song M-S, Kim J-H, Kim H-S, Park M-S, Lee J-Y, Liu HK, Dou SX (2005) A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim Acta 50(18):3667–3673

    Article  CAS  Google Scholar 

  16. Hu Y-Y, Liu ZG, Nam K-W, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu XQ, Wiaderek KM, Du L-S, Chapman KW, Chupas PJ, Yang X-Q, Grey CP (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12(12):1130–1136

    Article  CAS  PubMed  Google Scholar 

  17. Ranganath SB, Hassan AS, Ramachandran BR, Wick CD (2016) Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials. J Electrochem Soc 163(10):A2172–A2178

    Article  CAS  Google Scholar 

  18. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  19. Cao KZ, Jin T, Yang L, Jiao LF (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1(11):2213–2242

    Article  CAS  Google Scholar 

  20. Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911

    Article  CAS  PubMed  Google Scholar 

  21. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Wu HB, Lou XW (2014) Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv Energy Mater 4(4):1300958–1300971

    Article  CAS  Google Scholar 

  23. Wang F, Zuo ZC, Li L, He F, Lu FS, Li YL (2019) A universal strategy for constructing seamless graphdiyne on metal oxides to stabilize the electrochemical structure and interface. Adv Mater 31:1806272–1806284

    Google Scholar 

  24. Hou QD, Man QR, Liu PF, Jin RC, Cui YM, Li GH, Gao SM (2019) Encapsulation of Fe2O3/NiO and Fe2O3/Co3O4 nanosheets into conductive polypyrrole for superior lithium ion storage. Electrochim Acta 296:438–449

    Article  CAS  Google Scholar 

  25. Yu QX, Ma S, Zhou HH, Li JW, Wang ZQ, Tan Z, Chen L, Huang ZY, Fu CP, Kuang YF (2019) Partial self-sacrificing templates synthesis of sandwich-like mesoporous C-N@Fe3O4@C-N hollow spheres for high-performance Li-ion batteries. Int J Hydrog Energy 44(3):1816–1826

    Article  CAS  Google Scholar 

  26. Zhang P, Yue WB, Li RL (2018) Uniform yolk-shell Fe3O4@nitrogen-doped carbon composites with superior electrochemical performance for lithium-ion batteries. Electrochim Acta 282:595–601

    Article  CAS  Google Scholar 

  27. Zhao L, Liu W, Liu S, Wang JF, Wang H, Chen JX (2015) Fe3O4 nanoplates/carbon network synthesized by in situ pyrolysis of an organic-inorganic layered hybrid as a high-performance lithium-ion battery anode. J Mater Chem A 3:14210–14216

    Article  CAS  Google Scholar 

  28. Wang Y, Gao YJ, Shao J, Holze R, Chen Z, Yun YX, Qu QT, Zheng HH (2018) Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage. J Mater Chem A 6(8):3659–3666

    Article  CAS  Google Scholar 

  29. Wu QH, Zhao RF, Zhang XE, Li WL, Xu RH, Diao GW, Chen M (2017) Synthesis of flexible Fe3O4/C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries. J Power Sources 359:7–16

    Article  CAS  Google Scholar 

  30. Liu YZ, Wu NN, Wang Z, Cao HL, Liu JR (2017) Fe3O4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability. New J Chem 41(14):6241–6250

    Article  CAS  Google Scholar 

  31. Gao G, Zhai PY, Zhang Q, Shearer CJ, Zhao J, Shapter JG (2018) Fe3O4@S nanoparticles embedded/coated on the multi-wall carbon nanotubes for rechargeable lithium batteries. Chem Eng J 333:268–275

    Article  CAS  Google Scholar 

  32. Wang ZY, Liu C-J (2015) Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: current status and perspective. Nano Energy 11:277–293

    Article  CAS  Google Scholar 

  33. Yao W, Zhang F, Qiu WJ, Xu ZX, Xu JG, Wen YC (2018) General synthesis of uniform three-dimensional metal oxides/reduced graphene oxide aerogels by a nucleation-inducing growth strategy for high-performance lithium storage. ACS Sustain Chem Eng 7:847–857

    Article  CAS  Google Scholar 

  34. Zhang ZY, Tian X, Liu ML, Xu P, Xiao F, Wang S (2018) General and facile synthesis of hollow metal oxide nanoparticles coupled with graphene nanomesh architectures for highly efficient lithium storage. J Mater Chem A 6(46):23856–23864

    Article  CAS  Google Scholar 

  35. Zhou GM, Wang D-W, Li F, Zhang LL, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  36. Duan Y-J, Zhao D-L, Liu X-H, Yang H-X, Meng W-J, Zhao M, Tian X-M, Han X-Y (2019) Novel design of Fe3O4/hollow graphene spheres composite for high performance lithium-ion battery anodes. J Alloys Compd 779:466–473

    Article  CAS  Google Scholar 

  37. Wu Z-S, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194

    Article  CAS  PubMed  Google Scholar 

  38. Jing PP, Wang PF, Liu MT, Gao WS, Cui YF, Wang Z, Pu YP (2019) Hierarchical porous stratified texture and enhanced lithium-ion storage performance of Co3O4 modified by nitrogen-doped reduced graphene oxides. J Alloys Compd 774:236–243

    Article  CAS  Google Scholar 

  39. Hao SJ, Zhang BW, Wang Y, Li CJ, Feng JY, Ball S, Srinivasan M, Wu JS, Huang YZ (2018) Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochim Acta 260:965–973

    Article  CAS  Google Scholar 

  40. Tan H, Huang K, Bao YX, Li Y, Zhong JX (2017) Rationally designed layer-by-layer structure of Fe3O4 nanospheres@MWCNTs/graphene as electrode for lithium ion batteries with enhanced electrochemical performance. J Alloys Compd 699:812–817

    Article  CAS  Google Scholar 

  41. Zhao JF, Zhang SC, Liu WB, Du ZJ, Fang H (2014) Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433

    Article  CAS  Google Scholar 

  42. Liu J, Xu XJ, Hu RZ, Yang LC, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes. Adv Energy Mater 6(13):1600256–1600263

    Article  CAS  Google Scholar 

  43. Wang XL, Liu YG, Han HY, Zhao YY, Ma WM, Sun HY (2017) Polyaniline coated Fe3O4 hollow nanospheres as anode materials for lithium ion batteries. Sustainable Energy Fuels 1(4):915–922

    Article  CAS  Google Scholar 

  44. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  PubMed  Google Scholar 

  45. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    Article  CAS  PubMed  Google Scholar 

  46. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902

    Article  CAS  PubMed  Google Scholar 

  47. Kim C, Verma D, Nam DH, Chang W, Kim J (2017) Conformal carbon layer coating on well-dispersed Si nanoparticles on graphene oxide and the enhanced electrochemical performance. J Ind Eng Chem 52:260–269

    Article  CAS  Google Scholar 

  48. Zhou XJ, Zhang JL, Wu HX, Yang HJ, Zhang JY, Guo SW (2011) Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C 115(24):11957–11961

    Article  CAS  Google Scholar 

  49. Yan AG, Liu XH, Qiu GZ, Wu HY, Yi R, Zhang N, Xu J (2008) Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J Alloys Compd 458(1-2):487–491

    Article  CAS  Google Scholar 

  50. Ma M, Guo SW, Shen WZ (2018) Composites of layered M(HPO4)2 (M = Zr, Sn, and Ti) with reduced graphene oxide as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 10(3):2612–2618

    Article  CAS  PubMed  Google Scholar 

  51. Dong YC, Ma RG, Hu MJ, Cheng H, Yang QD, Li YY, Zapien JA (2013) Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphene composite with enhanced rate performance and cyclic stability for lithium ion batteries. Phys Chem Chem Phys 15(19):7174–7181

    Article  CAS  PubMed  Google Scholar 

  52. Gao G, Zhang Q, Cheng X-B, Sun RJ, Shapter JG, Yin T, Cui DX (2015) Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method. J Alloys Compd 649:82–88

    Article  CAS  Google Scholar 

  53. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  54. Zhu K, Zhang Y, Qiu HL, Meng Y, Gao Y, Meng X, Gao ZM, Chen G, Wei YJ (2016) Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance. J Alloys Compd 675:399–406

    Article  CAS  Google Scholar 

  55. Ma M, Yan JW, Yu CL, Guo SW (2018) Insight into the formation/decomposition of solid electrolyte interphase films and effects on the electrochemical properties of Sn/graphene anodes. J Phys Chem C 122(44):25211–25218

    Article  CAS  Google Scholar 

  56. Jiang X, Yang XL, Zhu YH, Yao YF, Zhao P, Li CZ (2015) Graphene/carbon-coated Fe3O4 nanoparticle hybrids for enhanced lithium storage. J Mater Chem A 3(5):2361–2369

    Article  CAS  Google Scholar 

  57. Han WJ, Qin XY, Wu JX, Li Q, Liu M, Xia Y, Du HD, Li BH, Kang FY (2018) Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Res 11(2):892–904

    Article  CAS  Google Scholar 

  58. Guo LG, Sun H, Qin CQ, Li W, Wang F, Song WL, Du J, Zhong F, Ding Y (2018) Flexible Fe3O4 nanoparticles/N-doped carbon nanofibers hybrid film as binder-free anode materials for lithium-ion batteries. Appl Surf Sci 459:263–270

    Article  CAS  Google Scholar 

  59. Wang Y, Jin YH, Zhao CC, Pan EZ, Jia MQ (2018) Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance. Appl Surf Sci 458:1035–1042

    Article  CAS  Google Scholar 

  60. Kumar SR, Kim JG, Viswanathan C, Kim WB, Selvan RK, Ponpandian N (2018) Facile synthesis of monodispersed 3D hierarchical Fe3O4 nanostructures decorated r-GO as the negative electrodes for Li-ion batteries. Mater Res Bull 97:272–280

    Article  CAS  Google Scholar 

  61. Hao S-M, Li Q-J, Qu J, An F, Zhang Y-J, Yu Z-Z (2018) Neuron-inspired Fe3O4/conductive carbon filament network for high-speed and stable lithium storage. ACS Appl Mater Interfaces 10(21):17923–17932

    Article  CAS  PubMed  Google Scholar 

  62. Zhang QM, Shi ZC, Deng YF, Zheng J, Liu GC, Chen GH (2012) Hollow Fe3O4/C spheres as superior lithium storage materials. J Power Sources 197:305–309

    Article  CAS  Google Scholar 

  63. Lu XY, Wang RH, Bai Y, Chen JJ, Sun J (2015) Facile preparation of a three-dimensional Fe3O4/macroporous graphene composite for high-performance Li storage. J Mater Chem A 3(22):12031–12037

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National “973 Program” of China (2015CB931801), and Yulin Energy Group, Shanxi, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzhuo Shen or Shouwu Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Zhang, J., Shen, W. et al. Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium ion diffusion rate. J Solid State Electrochem 23, 2969–2977 (2019). https://doi.org/10.1007/s10008-019-04390-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04390-7

Keywords

Navigation