Skip to main content
Log in

Vibrational analysis and AC electrical conduction behavior of lithium zinc orthogermanate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lithium zinc orthogermanate, Li2ZnGeO4, was synthesized by the solid-state reaction and characterized by X-ray diffraction (XRD) and electrical technique. Li2ZnGeO4 is of monoclinic symmetry with the space group P n. The unit cell parameters are as follows: a = 6.368(2)Å, b = 5.438(2)Å, c = 5.034(1)Å, β = 90.191(0)°, and V=174.360(1)Å3. The electrical measurements were carried out by impedance spectroscopy in the temperature and frequency range (553–653)K and (40 Hz to 1 MHz), respectively. The AC conductivity was interpreted using Jonscher’s law. s parameter decreases while the temperature increases indicating that the CBH model is the most reasonable mechanism of AC conduction behavior. Thermodynamic parameters such as the enthalpy ΔH and the change in entropy ΔS have been calculated. The negative value of ΔS may be due to the existence of dipole-dipole interactions and suggests that the molecules are more nearly aligned with each other in the activated state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xiukai L, Shuxin O, Naoki K, Jinhua Y (2008) Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation. Appl Catal A 334(1-2):51–58

    Article  Google Scholar 

  2. Ning Z, Shuxin O, Tetsuya K, Jinhua Y (2012) Synthesis of hierarchical Ag2ZnGeO4 hollow spheres for enhanced photocatalytic property. Chem Commun 48(79):9894–9896

    Article  Google Scholar 

  3. Jin L, Gaoke Z (2015) Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag2ZnGeO4 hollow spheres. Mater Sci Eng 193:198–205

    Article  Google Scholar 

  4. McDonald J, Ruigang Z, Chen L, Li Qin Z, Ruibo Z, Stanley Whittingham M, Hongfei J (2014) Hydrothermal synthesis, structure refinement, and electrochemical characterization of Li2CoGeO4 as an oxygen evolution catalyst. J Mater Chem A 2(43):8428–18434

    Article  Google Scholar 

  5. Nalbandyan V, Zvereva E, Shukaev I, Gordon E, Politaev V, Whangbo M, Petrenko A, Denisov R, Markina M, Tzschoppe M, Bukhteev K, Klingeler R, Vasiliev A (2017) A2MnXO4 family (A = Li, Na, Ag; X = Si, Ge): structural and magnetic properties. Inorg Chem 56(22):14023–14039

    Article  CAS  Google Scholar 

  6. Tianzhe T, Guojian J (2018) Enhanced persistent luminescence of Li2ZnGeO4 host by rare-earth ions (Pr3+, Nd3+ and Gd3+) doping. J Mater Sci Mater Electron 29(2):3146–3152

    Google Scholar 

  7. McDonald KJ, Zhang R, Ling C, Zhou LQ, Ruibo Z, Stanley Whittingham M, Jia H (2014) Hydrothermal synthesis, structure refinement, and electrochemical characterization of Li2CoGeO4 as an oxygen evolution catalyst. J Mater Chem A 2(43):18428–18434

    Article  CAS  Google Scholar 

  8. Grins J (1995) Structure and ionic conductivity of Na2BeGeO4. J Solid State Chem 118(1):62–65

    Article  CAS  Google Scholar 

  9. Vaivars G (1995) Synthesis, structure and conductivity of Ag2ZnSiO4, Ag2ZnGeO4 and Ag2BeSiO4. Solid State Ionics 78(3-4):259–267

    Article  CAS  Google Scholar 

  10. Kamphorst J, Hellstrom E (1980) Fast Li ionic conduction in solid solutions of the system Li4GeO4-Li2ZnGeO4-Li3PO4. Solid State Ionics 1(3-4):187–197

    Article  CAS  Google Scholar 

  11. Rodríguez-Carvajal J (1992) recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192(1-2):55–69

    Article  Google Scholar 

  12. Plattner E, Völlenke H, Wittmann A (1976) Die Kristallstruktur der Verbindung Li2ZnGeO4. Monatsh Chem 107(4):921–927

    Article  CAS  Google Scholar 

  13. Smith JV (1961) X-ray metallography. A Taylor. J Geol 69(6):732–733

    Article  Google Scholar 

  14. Fomichev VV, Proskuryakova EV (1997) Vibrational spectra and energy characteristics of the supersonics Li4SiO4 and Li4GeO4. J Solid State Chem 134(2):232–237

    Article  CAS  Google Scholar 

  15. Ross NL, Navrotsky A (1997) The Mg2GeO4 olivine-spinel phase transition. Phys Chem Miner 14(5):473–481

    Article  Google Scholar 

  16. Zheng HL, Zhang ZC, Zhou JG, Yang SS, Zhao J (2012) Vibrational spectra of CaGa2O4, Ca2GeO4, CaIn2O4 and CaSnO3 prepared by electrospinning. Appl Phys A 108(2):465–473

    Article  CAS  Google Scholar 

  17. Liu J, Zhang G, Yu JC, Guoa Y (2013) In situ synthesis of Zn2GeO4 hollow spheres and their enhanced photocatalytic activity for the degradation of antibiotic metronidazole. Dalton Trans 42(14):5092–5099

    Article  CAS  Google Scholar 

  18. Louati B, Hlel F, Guidara K (2009) Ac electrical properties and dielectric relaxation of the new mixed crystal (Na0.8Ag0.2)2PbP2O7. J Alloys Compd 486(1-2):299–303

    Article  CAS  Google Scholar 

  19. Intatha U, Eitssayeam S, Wang J, Tunkasiri T (2010) Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 Perovskite ceramic. Curr Appl Phys 10(1):21–25

    Article  Google Scholar 

  20. Ouled Mansour S, Louati B, Guidara K (2015) AC conductivity and dielectric behavior of high-temperature form of copper silver phosphate. Ionics 21(7):1973–1982. https://doi.org/10.1007/s11581-014-1362-2

    Article  CAS  Google Scholar 

  21. Selvasekarapandian S, Vijayakumar M (2003) The ac impedance spectroscopy studies on LiDyO2. Mater Chem Phys 80(1):29–33

    Article  CAS  Google Scholar 

  22. Suchanicz J (1998) The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater Sci Eng B 55(1-2):114–118

    Article  Google Scholar 

  23. Mahato DK, Sinha TP (2017) Dielectric, impedance and conduction behavior of double perovskite Pr2CuTiO6 ceramics. J Electron Mater 46(1):107–115

    Article  CAS  Google Scholar 

  24. Adnan SBRS, Mohamed NS (2014) Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte. Solid State Ionics 262:559–562

    Article  CAS  Google Scholar 

  25. Adnan SBRS, Mohamed NS (2014) AC conductivity and dielectric studies of modified Li4SiO4 ceramic electrolytes. Ceram Int 40(7):11441–11446

    Article  CAS  Google Scholar 

  26. Louati B, Gargouri M, Guidara K, Mhiri T (2005) AC electrical properties of the mixed crystal (NH4)3H (SO4)1.42(SeO4)0.58. J Phys Chem Solids 66(5):762–765

    Article  CAS  Google Scholar 

  27. Pan A, Ghosh A (2002) Mixed mobile ion effect in fluoride glasses. Phys Rev B 66(13):1–4

    Google Scholar 

  28. Ghosh A, Pan A (2000) Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys Rev Lett 84(10):2188–2190

    Article  CAS  Google Scholar 

  29. Elliott SR (1977) A theory of a.c conduction in chalcogenide glasses. Philos Mag 36(6):1291–1304

    Article  CAS  Google Scholar 

  30. Pike GE (1972) ac Conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6(4):1572–1580

    Article  CAS  Google Scholar 

  31. Ghosh A (1990) Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys Rev B 41(3):1479–1488

    Article  CAS  Google Scholar 

  32. Kotkata MF, Abdel-Wahab FA, Maksoud HM (2006) Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films. J Phys D Appl Phys 39(10):2059–2066

    Article  CAS  Google Scholar 

  33. Dult M, Kundu RS, Murugavel S, Punia R, Kishore N (2014) Conduction mechanism in bismuth silicate glasses containing titanium. Phys B Condens Matter 452:102–107

    Article  CAS  Google Scholar 

  34. Punia R, Kundu RS, Meenakshi D, Murugavel S, Kishore N (2012) Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J Appl Phys 112(8):083701–083704

    Article  Google Scholar 

  35. Zolanvari A, Goyal N, Tripathi SK (2004) Electrical properties of a-GexSe100-x. Pramana 63(3):617–625

    Article  CAS  Google Scholar 

  36. Hogarth CA, Islam MH, Rahman ASMS (1993) D.c. and a.c. electrical properties of vacuum evaporated thin SiO/GeO2 films. J Mater Sci 28(2):518–528

    Article  CAS  Google Scholar 

  37. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36(2):135–217

    Article  CAS  Google Scholar 

  38. Ben Said R, Louati B, Guidara K (2017) AC conduction mechanism of the zinc potassium diphosphate. Ionics 23(9):2397–2404

    Article  CAS  Google Scholar 

  39. Sarode AV, Kumbharkhane AC (2011) Dielectric relaxation study of poly(ethylene glycols) using TDR technique. J Mol Liq 164(3):226–232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourour Ben yahya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben yahya, S., Louati, B. Vibrational analysis and AC electrical conduction behavior of lithium zinc orthogermanate. Ionics 27, 3027–3034 (2021). https://doi.org/10.1007/s11581-021-04061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04061-6

Keywords

Navigation