Skip to main content
Log in

D.c. and a.c. electrical properties of vacuum evaporated thin SiO/GeO2 films

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The d.c. and a.c. electrical properties were studied for various compositions of SiO/GeO2 co-evaporated thin films carrying aluminium electrodes, in the temperature range 193–413 K. A.c. measurements were made over the frequency range 2x102–106Hz. The value of the d.c. activation energy was found to decrease with increasing GeO2 content in the SiO. In the region of high applied field (above 106 Vm−1, the conduction mechanism is governed by Schottky emission at the blocking contact. The a.c. electrical conductivity, σ(ω), varies with frequency according to the relation σ(ω) ∝ ωs, where the exponent s was found to be dependent on temperature and frequency. The a.c. conduction at low temperature was due to an electronic hopping process. The number of localized sites was estimated from the a.c. measurements for different compositions of SiO/GeO2 using the models proposed by Elliott and by Pollak, and the values are compared. The Elliott model satisfactorily accounts for the observed a.c. electrical results. A correlation was found between activation energy, optical band gap, conductivity and number of localized sites for the various compositions of SiO/GeO2 films. The relative dielectric constant, ɛr, and loss factor, tan δ, were found to increase with the increase of GeO2 content in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Argall and A. K. Jonscher, Thin Solid Films 2 (1968) 185.

    Google Scholar 

  2. A. E. Hill, A. M. Phahle and J. H. Calderwood, ibid. 5 (1970) 287.

    Google Scholar 

  3. S. Chan and C. K. Loh, ibid. 6 (1970) 91.

    Google Scholar 

  4. M. S. Frost and A. K. Jonscher, ibid. 29 (1975) 7.

    Google Scholar 

  5. A. Goswami and R. R. Varma, ibid. 28 (1975) 157.

    Google Scholar 

  6. T. Mahalingam, M. Radhakrishnan and C. Balasubramanian, ibid. 78 (1981) 229.

    Google Scholar 

  7. M. Chandra Shekhar and V. Hari Babu, J. Mater. Sci. Lett., 3 (1984) 600.

    Google Scholar 

  8. N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon, Oxford, 1979).

    Google Scholar 

  9. J. A. Simmons, G. S. Nadkarni and M. C. Lancaster, J. Appl. Phys. 41 (1970) 538.

    Google Scholar 

  10. M. N. Khan, M. I. Khan and C. A. Hogarth, Phys. Rev. B 22 (1980) 6155.

    Google Scholar 

  11. A. S. M. S. Rahman and C. A. Hogarth, J. Mater. Sci. Lett. 5 (1986) 693.

    Google Scholar 

  12. M. Pollak, Phil. Mag. 23 (1971) 519.

    Google Scholar 

  13. S. R. Elliott, ibid. 36 (1977) 1291.

    Google Scholar 

  14. C. A. Hogarth and L. A. Wright, in Proceedings of the International Conference on the Physics of Semiconductors”, Moscow, S. M. Ryvkin (ed.) (Nauka, Leningrad, (1968) p. 1271.

    Google Scholar 

  15. P. A. Walley and A. K. Jonscher, Thin Solid Films 1 (1968) 367.

    Google Scholar 

  16. J. G. Simmons, “D.C. Conduction in Thin Films” (Mills and Boon, London, (1971) p. 45.

    Google Scholar 

  17. A. K. Jonscher and R. M. Hill, “Physics of Thin Films”, (edited by G. Hass, M. H. Francombe and R. W. Hoggman, 1975) p. 169.

  18. M. Sayer and A. Mansingh, Phys. Rev. B, 6 (1972) 4629.

    Google Scholar 

  19. C. R. Dutta and K. Barua, Thin Solid Films 100 (1983) 149.

    Google Scholar 

  20. S. R. Pollack, J. Appl. Phys. 34 (1963) 877.

    Google Scholar 

  21. R. M. Hill and A. K. Jonscher, J. Non-Cryst. Solids 32 (1979) 53.

    Google Scholar 

  22. W. S. Chan and A. K. Jonscher, Phys. Status Solidi 32 (1969) 749.

    Google Scholar 

  23. A. E. Owen and J. M. Robertson, J. Non-Cryst. Solids 2 (1970) 40.

    Google Scholar 

  24. M. Pollak and T. H. Geballe, Phys. Rev. 122 (1961) 1742.

    Google Scholar 

  25. M. Pollak, Phys. Rev. 138A (1965) 1822.

    Google Scholar 

  26. H. K. Rockstad, J. Non-Cryst. Solids 8–10 (1972) 621.

    Google Scholar 

  27. M. Meaudre and R. Meaudre, Phil. Mag. B. 40 (1979) 401.

    Google Scholar 

  28. A. S. M. S. Rahman, M. H. Islam and C. A. Hogarth, Int. J. Electron. 62 (1987) 685.

    Google Scholar 

  29. S. R. Elliott, Phil. Mag. B 37 (1978) 553.

    Google Scholar 

  30. K. L. Chopra and C. K. Bahl, Phys. Rev. B. 1 (1970) 2545.

    Google Scholar 

  31. N. Bluzer and S. K. Bahl, in “Amorphous and Liquid Semiconductors”, Vol. 2, edited by J. Stuke and W. Brenig (Taylor and Francis, London, 1974) p. 1209.

    Google Scholar 

  32. W. E. Spear, in “Amorphous and Liquid Semiconductors”, Vol. 1, edited by J. Stuke and W. Brenig (Taylor and Francis, London, 1974) p. 1.

    Google Scholar 

  33. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.

    Google Scholar 

  34. A. Goswami and A. P. Goswami, Thin Solid Films 16 (1973) 175.

    Google Scholar 

  35. A. R. Long and W. R. Hogg, J. Non-Cryst. Solids 59–60 (1983) 1095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogarth, C.A., Islam, M.H. & Rahman, A.S.M.S. D.c. and a.c. electrical properties of vacuum evaporated thin SiO/GeO2 films. JOURNAL OF MATERIALS SCIENCE 28, 518–528 (1993). https://doi.org/10.1007/BF00357833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357833

Keywords

Navigation