Skip to main content

Advertisement

Log in

Sulfur-doped mesoporous carbon activated by sodium sulfate as a superior performance anode for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mesoporous carbon (MC) was activated by Na2SO4 to prepare sulfur-doped MC (S-MC) for superior lithium storage. Compared with MC, S-MC exhibits unique structure such as reduced particle size, doped S heteroatoms, developed mesopores, and narrowed pore size distributions. It makes S-MC deliver superior lithium storage performance. The first reversible capacity of S-MC is as high as 1197.2 mAh·g−1, which is much higher than that of MC (698.6 mAh·g−1). What is more, the rate capability of S-MC is much better than that of MC, and the charge capacity of S-MC is 303.4 mAh·g−1 at 1.5 A·g−1. The specific charge capacity of S-MC increases to 955.6 mAh·g−1 after 300 charge-discharge cycles, exhibiting excellent cycling performance. Our findings give a new way to modify porous carbon for superior lithium storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang SH, Meng Q, Chen PF, Kisslinger K, Cen J, Orlov A, Zhu Y, Stach EA, Chu YH, Su D (2017) Strain coupling of conversion-type Fe3O4 thin films for lithium ion batteries. Angew Chem Int Ed 56:7813–7816

    Article  Google Scholar 

  2. Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T (2018) Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon 128:147–163

    Article  CAS  Google Scholar 

  3. Zhang Q, Dai Q, Li M, Wnag X, Li A (2016) Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage. J Mater Chem A 4:19132–19139

    Article  CAS  Google Scholar 

  4. Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang YM, Yoon WS (2020) Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed 59:2578–2605

    Article  CAS  Google Scholar 

  5. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 10:246–267

    Article  Google Scholar 

  6. Zeng X, Li M, El-Hady DA, Alshitari W, Al-Bogami AS, Lu J, Amine K (2019) Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 9:1900161

    Article  Google Scholar 

  7. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330

    Article  CAS  Google Scholar 

  8. Katchala N, Mohan EH, Bulusu SV, Vu V, Tata NR, Srinivasan A (2019) One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery. Mater Lett 237:156–160

    Article  CAS  Google Scholar 

  9. Qiu D, Kang C, Li M, Wei J, Hou Z, Wang F (2020) Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage. Carbon 162:595–603

    Article  CAS  Google Scholar 

  10. Ning G, Ma X, Zhu XY, Cao Y, Sun Y, Qi C, Fan Z, Li Y, Zhang X, Lan X, Gao J (2014) Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. ACS Appl Mater Interfaces 6:15950–15958

    Article  CAS  Google Scholar 

  11. Wang Q, Xie Z, Liang Y, Li L, Liu B, Li X, Liu C, Wu X, Huang Q (2019) Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance. Ionics 25:2111–2119

    Article  CAS  Google Scholar 

  12. Li R, Huang J, Li J, Cao L, Zhong X, Yu A, Lu G (2020) Nitrogen-doped porous hard carbons derived from shaddock peel for high capacity lithium-ion battery anodes. J Electroanal Chem 862:114044

    Article  CAS  Google Scholar 

  13. Zhang Q, Li M, Meng Y, Li A (2018) KOH activated nitrogen doped hard carbon nanotubes as high performance anode for lithium ion batteries. Electron Mater Lett 14:755–765

    Article  CAS  Google Scholar 

  14. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165–175

    Article  CAS  Google Scholar 

  15. Kiciński W, Szala M, Bystrzejewski M (2014) Sulfur-doped porous carbons: synthesis and applications. Carbon 68:1–32

    Article  Google Scholar 

  16. Zhang Q, Dai Q, Yan C, Su C, Li A (2017) Nitrogen-doped porous carbon nanoparticle derived from nitrogen containing conjugated microporous polymer as high performance lithium battery anode. J Alloys Compd 714:204–212

    Article  CAS  Google Scholar 

  17. Yan Z, Yang QW, Wang Q, Ma J (2020) Nitrogen doped porous carbon as excellent dual anodes for Li-and Na-ion batteries. Chin Chem Lett 31:583–588

    Article  CAS  Google Scholar 

  18. Zhang J, Yang Z, Qiu J, Lee H-W (2016) Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high performance anode material for lithium-ion batteries. J Mater Chem A 4:5802–5809

    Article  CAS  Google Scholar 

  19. Zhang Q, Meng Y, Bai Y, Li M (2020) Sulfur and nitrogen in-situ co-doped hierarchical spherical porous carbon for efficient lithium storage. J Electroanal Chem 862:114013

    Article  CAS  Google Scholar 

  20. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a super high capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  21. Wang H, Wang Y, Li Y, Wan Y, Duan Q (2015) Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon 82:116–123

    Article  CAS  Google Scholar 

  22. Wang J, Xia Y, Liu Y, Li W, Zhao D (2019) Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Mater 22:147–153

    Article  Google Scholar 

  23. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y (2018) N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater 28:1706294

    Article  Google Scholar 

  24. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878

    Article  CAS  Google Scholar 

  25. Sun L, Liu J, Liu Z, Wang T, Wang H, Li Y (2018) Sulfur-doped mesoporous carbon via thermal reduction of CS2 by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes. RSC Adv 8:19964–19970

    Article  CAS  Google Scholar 

  26. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445

    Article  CAS  Google Scholar 

  27. Chen H, Wei H, Fu N, Qian W, Liu Y, Lin H, Han S (2018) Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials. J Mater Sci 53:2669–2684

    Article  CAS  Google Scholar 

  28. Kakunuri M, Sharma CS (2015) Candle soot derived fractal-like carbon nanoparticles network as high-rate lithium ion battery anode material. Electrochim Acta 180:353–359

    Article  CAS  Google Scholar 

  29. Zhuang G, Bai J, Tao X, Luo J, Wang X, Gao Y, Zhong X, Li X, Wang J (2015) Synergistic effect of S, N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. J Mater Chem A 3:20244–20253

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Nos. 21968016 and 21466020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingtang Zhang or Xiaomei Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Bai, Y., Ma, Y. et al. Sulfur-doped mesoporous carbon activated by sodium sulfate as a superior performance anode for lithium ion batteries. Ionics 27, 1061–1068 (2021). https://doi.org/10.1007/s11581-020-03890-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03890-1

Keywords

Navigation