Skip to main content

Advertisement

Log in

Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li7La3Zr2O12 (LLZO) with garnet structure has been acknowledged as a promising solid electrolyte for the next generation Li-ion batteries owing to its high chemical stability against Li metal and relatively high Li-ion conductivity. In this work, Li7-3xFexLa3Zr2O12 ceramics were prepared by the Pechini method. The influence of Fe substitution on the structure and microstructure of LLZO powder and ceramic were investigated by X-ray diffraction (XRD), TG (DSC)-MS, Raman spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy. TG-MS and XRD results indicated that LLZO powder could be formed around 750 °C. SEM results showed that the introduction of Fe accelerated densification of LLZO ceramic. The relative density of the composition with x = 0.2 was approximately 95.6%. Its ionic conductivity and activation energy were 4.28 × 10−4 S/cm and 0.27 eV at 30 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Google Scholar 

  2. Zheng F, Kotobuki M, Song S, Lai M, Lu L (2018) Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources 389:198–213

    CAS  Google Scholar 

  3. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    CAS  PubMed  Google Scholar 

  4. Xia S, Wu X, Zhang Z, Cui Y, Liu W (2019) Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem. 5:1–33

    Google Scholar 

  5. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem 46:7778–7781

    CAS  Google Scholar 

  6. Kalaga K, Rodrigues MF, Gullapalli H, Babu G, Arava LM, Ajayan PM (2015) Quasi-solid electrolytes for high temperature lithium ion batteries. ACS Appl Mater Interfaces 7:25777–25783

    CAS  PubMed  Google Scholar 

  7. Yan G, Nonemacher JF, Zheng H, Finsterbusch M, Malzbender J, Krüger M (2019) An investigation on strength distribution, subcritical crack growth and lifetime of the lithium-ion conductor Li7La3Zr2O12. J Mater Sci 54:5671–5681

    CAS  Google Scholar 

  8. Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 182:2046–2052

    CAS  Google Scholar 

  9. Matsui M, Takahashi K, Sakamoto K, Hirano A, Takeda Y, Yamamoto O, Imanishi N (2014) Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12. Dalton Trans 43:1019–1024

    CAS  PubMed  Google Scholar 

  10. Buschmann H, Dolle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H, Lotnyk A, Duppel V, Kienle L, Janek J (2011) Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys 13:19378–19392

    CAS  PubMed  Google Scholar 

  11. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem 50:1089–1097

    CAS  PubMed  Google Scholar 

  12. Rettenwander D, Blaha P, Laskowski R, Schwarz K, Bottke P, Wilkening M, Geiger CA, Amthauer G (2014) DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet. Chem Mater 26:2617–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Lai W (2015) Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12 : the role of Ta substitution and H2O/CO2 exposure. J Power Sources 275:612–620

    CAS  Google Scholar 

  14. Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem Mater 27:3658–3665

    CAS  Google Scholar 

  15. Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J (2018) Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochim Acta 270:501–508

    CAS  Google Scholar 

  16. Shao C, Yu Z, Liu H, Zheng Z, Sun N, Diao C (2017) Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim Acta 225:345–349

    CAS  Google Scholar 

  17. Li Y, Wang Z, Cao Y, Du F, Chen C, Cui Z, Guo X (2015) W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim Acta 180:37–42

    CAS  Google Scholar 

  18. Ramakumar S, Satyanarayana L, Manorama SV, Murugan R (2013) Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys 15:11327

    CAS  PubMed  Google Scholar 

  19. Wagner R, Rettenwander D, Redhammer GJ, Tippelt G, Sabathi G, Musso ME, Stanje B, Wilkening M, Suard E, Amthauer G (2016) Synthesis, crystal structure, and stability of cubic Li7-xLa3Zr2-xBixO12. Inorg Chem 55:12211–12219

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R (2012) Synthesis of garnet structured Li7+xLa3YxZr2-xO12 (x = 0-0.4) by modified sol-gel method. J Sol-Gel Sci Technol 64:510–514

    CAS  Google Scholar 

  21. Rettenwander D, Welzl A, Cheng L, Fleig J, Musso M, Suard E, Doeff MM, Redhammer GJ, Amthauer G (2015) Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x = 0.1-0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+. Inorg Chem 54:10440–10449

    CAS  PubMed  Google Scholar 

  22. Jin Y, McGinn PJ (2011) Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources 196:8683–8687

    CAS  Google Scholar 

  23. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 206:28–32

    CAS  Google Scholar 

  24. El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources 225:13–19

    Google Scholar 

  25. Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J (2012) Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources 206:315–319

    CAS  Google Scholar 

  26. Rettenwander D, Geiger CA, Tribus M, Tropper P, Amthauer G (2014) A synthesis and crystal chemical study of the fast ion conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84. Inorg Chem 53:6264–6269

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen JL (2012) Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12. Mater Chem Phys 134:571–575

    CAS  Google Scholar 

  28. Rettenwander D, Geiger CA, Amthauer G (2013) Synthesis and crystal chemistry of the fast Li-ion conductor Li7La3Zr2O12 doped with Fe. Inorg Chem 52:8005–8009

    CAS  PubMed  Google Scholar 

  29. Rettenwander D, Geiger CA, Tribus M, Tropper P, Wagner R, Tippelt G, Lottermoser W, Amthauer G (2015) The solubility and site preference of Fe3+ in Li7-3xFexLa3Zr2O12 garnets. J Solid State Chem 230:266–271

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagner R, Redhammer GJ, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G (2016) Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon I43d structure. Chem Mater 28:5943–5951

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff MM, Amthauer G (2018) Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J Phys Chem C Nanomater Interfaces 122:3780–3785

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Burak K, FurkanBuluç DA, Turan S (2019) The effect of limonite addition on the performance of Li7La3Zr2O12. Ceram Int 45:21401–21408

    Google Scholar 

  33. Paulus A, Kammler S, Heuer S, Paulus MC, Jakes P, Granwehr J, Eichel R-A (2019) Sol gel vs solid state synthesis of the fast lithium-ion conducting solid state electrolyte Li7La3Zr2O12 substituted with iron. J Electrochem Soc 166:A5403–A5409

    CAS  Google Scholar 

  34. Cao SY, Song SB, Xiang X, Hu Q, Zhang C, Xia ZW, Xu YH, Zha WP, Li JY, Gonzale PM, Han YH, Chen F (2019) Modeling, preparation, and elemental doping of Li7La3Zr2O12 garnet-type solid electrolytes: a review. J Korean Chem Soc 56:111–129

    CAS  Google Scholar 

  35. Smetaczek S, Wachter-Welzl A, Wagner R, Rettenwander D, Amthauer G, Andrejs L, Taibl S, Limbeck A, Fleig J (2019) Local Li-ion conductivity changes within Al stabilized Li7La3Zr2O12 and their relationship to three-dimensional variations of the bulk composition. J Mater Chem A 7:6818–6831

    CAS  Google Scholar 

  36. Reichenbach HM, McGinn PJ (2001) Combinatorial synthesis of oxide powders. J Mater Res 16:967–974

    CAS  Google Scholar 

  37. Gao YX, Wang XP, Wang WG, Zhuang Z, Zhang DM, Fang QF (2010) Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12. Solid State Ionics 181:1415–1419

    CAS  Google Scholar 

  38. Muccillo ENS, Rocha RA, Muccillo R (2002) Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques. Mater Lett 53:353–358

    CAS  Google Scholar 

  39. Baral K, Narayanan S, Ramezanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of Li-excess garnet-type Li(5+2x)La(3)Ta(2-x)Y(x)O(12) (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Phys Chem Chem Phys 16:11356–11365

    CAS  PubMed  Google Scholar 

  40. Peng H, Wu Q, Xiao L (2013) Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol-gel process. J Sol-Gel Sci Technol 66:175–179

    CAS  Google Scholar 

  41. Yang X, Kong D, Chen Z, Sun Y, Liu Y (2018) Low-temperature fabrication for transparency Mg doping Li7La3Zr2O12 solid state electrolyte. J Mater Sci Mater Electron 29:1523–1529

    CAS  Google Scholar 

  42. Li L, Feng L, Zhang Y, Peng H, Zou Y (2017) Low temperature, fast synthesis and ionic conductivity of Li6MLa2Nb2O12 (M=Ca, Sr, Ba) garnets. J. Sol-Gel Sci. Techn. 83:660–665

    CAS  Google Scholar 

  43. Buannic L, Orayech B, Del Amo JML, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordés A (2017) Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater 29:1769–1778

    CAS  Google Scholar 

  44. Kokal I, Somer M, Notten PHL, Hintzen HT (2011) Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 185:42–46

    CAS  Google Scholar 

  45. Pan XX, Wang JX, Chang XH, Dong Y, Guan WB (2018) A novel solid-liquid route for synthesizing cubic garnet Al-substituted Li7La3Zr2O12. Solid State Ionics 317:1–6

    CAS  Google Scholar 

  46. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3.330.697

  47. Chen W, Mofarah S, Hanaor D, Koshy P, Chen H, Jiang Y, Sorrell C (2018) Homogeneity in TiO2 nanoparticles through sol-gel versus Pechini syntheses. Inorg Chem 57:7279–7289

    CAS  PubMed  Google Scholar 

  48. Sakamoto J, Rangasamy E, Kim H, Kim Y, Wolfenstine J (2013) Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12. Nanotechnology 24:424005

    PubMed  Google Scholar 

  49. Kumar PJ, Nishimura K, Senna M, Duvel A, Heitjans P, Kawaguchi T, Sakamoto N, Wakiya N, Suzuki H (2016) RSC Adv 6:62656

    CAS  Google Scholar 

  50. Rao RP, Gu W, Sharma N, Peterson VK, Avdeev M, Adams S (2015) In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: toward a rational synthesis of garnet solid electrolytes. Chem Mater 27:2903–2910

    CAS  Google Scholar 

  51. Li Y, Yang T, Wu W, Cao Z, He W, Gao Y, Liu J, Li G (2018) Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 24:3305–3315

    CAS  Google Scholar 

  52. Tietz F, Wegener T, Gerhards MT, Giarola M, Mariotto G (2013) Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ionics 230:77–82

    CAS  Google Scholar 

  53. Larraz G, Orera A, Sanjuán ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J Mater Chem A 1:11419–11428

    CAS  Google Scholar 

  54. Julien C (2000) 4-V cathode materials for rechargeable lithium batteries wet-chemistry synthesis, structure and electrochemistry. Ionics 6:30–46

    CAS  Google Scholar 

  55. Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries. Adv Mater Sci Eng B 100:69–78

    Google Scholar 

  56. Sharafi A, Yu S, Naguib M, Lee M, Ma C, Meyer HM, Nanda J, Chi M, Siegel DJ, Sakamoto J (2017) Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J Mater Chem A 5:13475–13487

    CAS  Google Scholar 

  57. Gupta A, Murugan R, Paranthaman MP, Bi Z, Bridges CA, Nakanishi M, Sokolov AP, Han KS, Hagaman EW, Xie H, Mullins CB, Goodenough JB (2012) Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12. J Power Sources 209:184–188

    CAS  Google Scholar 

  58. Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13:509–512

    CAS  Google Scholar 

  59. Xu B, Duan H, Xia W, Guo Y, Kang H, Li H, Liu H (2016) Multistep sintering to synthesize fast lithium garnets. J Power Sources 302:291–297

    CAS  Google Scholar 

  60. Zhang Y, Chen F, Tu R, Shen Q, Zhang X, Zhang L (2016) Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ionics 284:53–60

    CAS  Google Scholar 

  61. Li X, Li R, Chu S, Liao K, Cai R, Zhou W, Shao Z (2019) Rational design of strontium antimony co-doped Li7La3Zr2O12 electrolyte membrane for solid-state lithium batteries. J Alloys Compd 794:347–357

    CAS  Google Scholar 

  62. Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G (2018) The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int 44:1538–1544

    CAS  Google Scholar 

  63. Janani N, Ramakumar S, Kannan S, Murugan R, Dunn B (2015) Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J Am Ceram Soc 98:2039–2046

    CAS  Google Scholar 

  64. Afyon S, Krumeich F, Rupp J (2015) A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J Mater Chem A 3:18636–18648

    CAS  Google Scholar 

  65. Li H, Huang B, Huang Z, Wang C (2019) Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering. Ceram Int 45:18115–18118

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Program for National Natural Science Foundation of China (Grant Nos. 51562029 and 21762031) and Program for Young Talents of Science and Technology in University of Inner Mongolia Autonomous Region (Grant No. NJYT-17-A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhu Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Wu, W., Li, Y. et al. Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics 26, 4247–4256 (2020). https://doi.org/10.1007/s11581-020-03580-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03580-y

Keywords

Navigation