Skip to main content
Log in

Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Cobalt ferrite (CoFe2O4) was successfully grown on the nickel foam by a mild hydrothermal method combined with a simple annealing treatment, utilizing SDS, PVP, CTAB, and PVA as template agents. The effect of different template agents on the morphology and electrochemical performance of CoFe2O4 electrode for supercapacitor was further investigated in detail. The physicochemical properties of the CoFe2O4 materials were examined via the X-ray diffraction, the N2 adsorption-desorption, the scanning electron microscopy, and X-ray photoelectron spectroscopy. It can be proved that the purity of the material was high; the surface morphology and aperture were changed by using different template agents. In particular, the CoFe2O4 electrode, when adding an appropriate amount of PVA, SDS, PVP, and CTAB, showed a high capacitance of 1342, 828, 1100, and 1148 F g−1 at 1 A g−1. In addition, an asymmetric supercapacitor (ASC) was assembled using CFO-A as the positive electrode, activated carbon as the negative electrode, and 6 M KOH solution as the electrolyte. The ASC own an energy density of 55.42 Wh kg−1 at a power density of 769.7 W kg−1 and a retention rate of 56% at a current density of 10 A g−1, which exhibits excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu M, Chen W, Zhu X et al (2019) Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 141:748–757

    Article  CAS  Google Scholar 

  2. Zhang J, Jiang J, Li H et al (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. J Energy Environ Sci 4(10):4009

    Article  CAS  Google Scholar 

  3. Lee SW, Gallant BM, Byon HR et al (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. J Energy Environ Sci 4(6):1972

    Article  CAS  Google Scholar 

  4. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. J Adv Mater 27(6):1117–1123

    Article  CAS  Google Scholar 

  5. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. J Adv Mater 22(8):E28–E62

    Article  CAS  Google Scholar 

  6. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  7. Yao M, Hu Z, Xu Z et al (2015) Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. J Electrochim Acta 158:96–104

    Article  CAS  Google Scholar 

  8. Fu M, Zhu Z, Zhou Y et al (2020) Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials. Ceram Int 46(1):850–856

    Article  CAS  Google Scholar 

  9. Sankar KV, Shanmugapriya S, Surendran S et al (2018) Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery. J Colloid Interface Sci 513:480–488

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Jia W, Jiang M et al (2016) One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. J Nanopart Res 9(7):2026–2033

    CAS  Google Scholar 

  11. Kennaz H, Harat A, Guellati O et al (2017) Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J Solid State Electrochem 22(3):835–847

    Article  Google Scholar 

  12. Fu M, Chen W, Ding J et al (2019) Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. J Alloys Compd 782:952–960

    Article  CAS  Google Scholar 

  13. Fu M, Jiao Q, Zhao Y et al (2014) Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J Mater Chem A 2(3):735–744

    Article  CAS  Google Scholar 

  14. Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7(2):632–637

    Article  CAS  Google Scholar 

  15. Wang J, Tang H, Ren H et al (2014) pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv Sci (Weinh) 1(1):1400011

    Article  Google Scholar 

  16. Li L, Ma R, Iyi N et al (2006) Hollow nanoshell of layered double hydroxide. Chem Commun (Camb) 29:3125–3127

    Article  Google Scholar 

  17. Du C, Han E, Sun L et al (2020) Template agent for assisting in the synthesis of ZnCo2O4 on Ni foam for high-performance supercapacitors. Ionics 26:383–391

    Article  CAS  Google Scholar 

  18. Tian Y, Zhu L, Han E et al (2020) Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitor. Ionics 26:367–381

    Article  CAS  Google Scholar 

  19. Koczkur KM, Mourdikoudis S, Polavarapu L et al (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41):17883–17905

    Article  CAS  PubMed  Google Scholar 

  20. An C, Wang Y, Huang Y et al (2014) Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. Cryst Eng Comm 16(3):385–392

    Article  CAS  Google Scholar 

  21. Deng DH, Pang H, Du JM et al (2012) Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties. Cryst Res Technol 47(10):1032–1038

    Article  CAS  Google Scholar 

  22. Zhang H, Gu J, Jiang Y et al (2013) Effects of sodium dodecyl sulfate on the electrochemical behavior of supercapacitor electrode MnO2. J Solid State Electrochem 18(1):235–247

    Article  Google Scholar 

  23. Wang Y, Zhang S, Wei K et al (2006) Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett 60(12):1484–1487

    Article  CAS  Google Scholar 

  24. Kong L-B, Lu C, Liu M-C et al (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17(5):1463–1471

    Article  CAS  Google Scholar 

  25. Singh A, Akhtar MA, Chandra A (2017) Trade-off between capacitance and cycling at elevated temperatures in redox additive aqueous electrolyte based high performance asymmetric supercapacitors. J Electrochim Acta 229:291–298

    Article  CAS  Google Scholar 

  26. Gao H, Xiang J, Cao Y (2017) Hierarchically porous CoFe2O4 nanosheets supported on Ni foam with excellent electrochemical properties for asymmetric supercapacitors. Appl Surf Sci 413:351–359

    Article  CAS  Google Scholar 

  27. Bhujun B, Tan MTT, Shanmugam AS (2017) Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. J Res Phys:7345–7353

  28. Zeng Y, Yu M, Meng Y et al (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6(24):1601053

    Article  Google Scholar 

  29. Zeng Z, Zhu L, Han E et al (2019) Soft-templating and hydrothermal synthesis of NiCo2O4 nanomaterials on Ni foam for high-performance supercapacitors. Ionics 25(6):2791–2803

    Article  CAS  Google Scholar 

  30. Datt G, Abhyankar AC (2017) Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites. J Appl Phys 122(3):034102

    Article  Google Scholar 

  31. Ren J, Li L, Chen C et al (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. J Adv Mater 25(8):1155–1159 1224

    Article  CAS  Google Scholar 

  32. Han E, Han Y, Zhu L et al (2017) Polyvinyl pyrrolidone-assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor. Ionics 24(9):2705–2715

    Article  Google Scholar 

  33. Mohamed SG, Hung TF, Chen CJ et al (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv 4(33):17230

    Article  CAS  Google Scholar 

  34. Yue L, Zhang S, Zhao H et al (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329:15–24

    Article  CAS  Google Scholar 

  35. Sankar KV, Selvan RK, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5(121):99959–99967

    Article  CAS  Google Scholar 

  36. Zhao Y, Xu Y, Zeng J et al (2017) Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors. RSC Adv 7(87):55513–55522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enshan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Han, E., He, Y. et al. Effect of different templating agents on cobalt ferrite (CoFe2O4) nanomaterials for high-performance supercapacitor. Ionics 26, 3643–3654 (2020). https://doi.org/10.1007/s11581-020-03482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03482-z

Keywords

Navigation