Skip to main content

Advertisement

Log in

Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transition metal layered double hydroxides (LDHs) are one of the great potential electrode materials for pseudocapacitors. In this paper, NiCo-LDHs, NiAl-LDHs, CoAl-LDHs, and NiCoAl-LDHs were synthesized by hydrothermal method and these materials directly grew on foamed nickel. The electrochemical performance of these materials was investigated by galvanostatic charge-discharge test (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The morphology and physicochemical properties of the materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The capacity of these materials at 1 A g−1 was 894.4, 942.4, 885, and 1068 F g−1, respectively. The capacity retention rates after 2000 cycles at 10 A g−1 were 80.05%, 76.4%, 81.92%, and 83.7%, respectively. And then, we synthesized NiCoAl-LDHs with 0.002, 0.003, 0.004, and 0.005 mol Tween80 by the same experimental method. The influence on the morphology and electrochemical properties of NiCoAl-LDHs with different dosage of template agents was investigated. The results show that the capacity at 1 A g−1 was 1336.4, 1433.2, 1430, and 1289.2 F g−1, respectively. The capacity retention rates after 2000 cycles at 10 A g−1 were 85%, 92%, 90%, and 88%, respectively. An asymmetric supercapacitor (ASC) was assembled with 0.003 mol Tween80 as positive electrode and activated carbon as negative electrode. The ASC device exhibited an ultra-high energy density of 89.79 Wh kg−1 at power density of 775 W kg−1 as well as long-term stability (86.02% of its initial capacitance retention at 10 A g−1over 2000 cycles), outperforming most of LDH and metal oxides ASCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  2. Fang J, Li M, Li Q, Zhang W, Shou Q, Liu F, Zhang X (2012) Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application insupercapacitors. Electrochim Acta 85:248–255

    Article  CAS  Google Scholar 

  3. Liu SD, Hui KS, Hui KN (2015) 1D hierarchical MnCo2O4 nanowire@MnO2 sheet core-shell arrays on graphite paper as superior electrodes for asymmetric supercapacitors. ChemNanoMat 1(8):593–602

    Article  CAS  Google Scholar 

  4. Zhang LJ, Hui KN, Hui KS, Lee H (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. J Power Sources 318:76–85

    Article  CAS  Google Scholar 

  5. Mai L, Tian X, Xu X, Chang L, Xu L (2016) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114:11828–11862

    Article  CAS  Google Scholar 

  6. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942

    Article  CAS  Google Scholar 

  7. Forticaux A, Dang L, Liang H, Jin S (2015) Controlled synthesis of layered double hydroxide nanoplates driven by screw dislocations. Nano Lett 15(5):3403–3409

    Article  CAS  PubMed  Google Scholar 

  8. Xu MW, Zhao DD, Bao SJ et al (2007) Mesoporous amorphous MnO2, as electrode material for supercapacitor. J Solid State Electrochem 11(8):1101–1107

    Article  CAS  Google Scholar 

  9. Seftel EM, Niarchos M, Vordos N, Nolan JW, Mertens M, Mitropoulos AC, Vansant EF, Cool P (2015) LDH and TiO2/ LDH-type nanocomposite systems: a systematic study on structural characteristics. Microporous Mesoporous Mater 203:208–215

    Article  CAS  Google Scholar 

  10. Liu CJ, Chen SJ, Li YW et al (2012) Synthesis and electrochemical performance of alpha-nickel hydroxide codoped with Al3+ and Ca2+. Ionics 18:197–202

    Article  CAS  Google Scholar 

  11. Vighnesha KM, Shruthi S et al (2018) Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications. J Mater Sci Mater Electron 22:1–8

    Google Scholar 

  12. Han ES, Han YJ, Zhu LZ et al (2018) Polyvinyl pyrrolidone-assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor. Ionics 24:2705–2715

    Article  CAS  Google Scholar 

  13. Li L, Hui KS, Hui KN et al (2017) Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J Mater Chem A 5(37):19687–19696

    Article  CAS  Google Scholar 

  14. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  PubMed  Google Scholar 

  15. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  16. Lu Z, Zhu W, Lei X, Williams GR, O’Hare D, Chang Z, Sun X, Duan X (2012) High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 4:3640–3643

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Williams GR, Chang Z, Jiang M, Liu J, Lei X, Sun X (2014) Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. ACS Appl Mater Interfaces 6:16304–16311

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Chen J, Xu S, Shao M, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946

    Article  CAS  Google Scholar 

  19. Cheng Y, Zhang H, Varanasi CV, Liu J (2013) Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ Sci 6:3314–3321

    Article  CAS  Google Scholar 

  20. Liu XM, Zhang YH, Zhang XG, Fu SY (2014) Studies on Me/Al-layered double hydroxides (Me=Ni and Co) as electrode materials for electrochemical capacitors. Electrochim Acta 49:3137–3141

    Article  CAS  Google Scholar 

  21. Gupta V, Gupta S, Miura N (2009) Electrochemically synthesized large area network of CoxNiyAlz layered triple hydroxides nanosheets: a high performance supercapacitor. J Power Sources 189:1292–1295

    Article  CAS  Google Scholar 

  22. Liu F, Chen YY, Liu Y et al (2019) Integrating ultrathin and modified NiCoAl-layered double hydroxide nanosheets with N-doped reduced graphene oxide for high-performance all-solid-state supercapacitors. Nanoscale 11:9896–9905

    Article  CAS  PubMed  Google Scholar 

  23. Xiao YH, Su DC, Wang XZ et al (2017) Ultrahigh energy density and stable supercapacitor with 2D NiCoAl layered double hydroxide. Electrochim Acta 253:324–332

    Article  CAS  Google Scholar 

  24. He XY, Liu Q, Liu JY et al (2017) Hierarchical NiCo2O4@NiCoAl-layered double hydroxide core/shell nanoforest arrays as advanced electrodes for high-performance asymmetric supercapacitors. Alloys Compd 724:130–138

    Article  CAS  Google Scholar 

  25. Yang J, Yu C, Fan XM, et al (2013) Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances†. J Mater Chem A 1: 1963–1968.

    Article  CAS  Google Scholar 

  26. Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J Mater Chem A 1(31):8836

    Article  CAS  Google Scholar 

  27. Qiao YQ, Jia P, Zhang XY et al (2017) One-pot synthesized mesoporous Ni-Co hydroxide for high performance supercapacitors. Ionics 23:1229–1238

    Article  CAS  Google Scholar 

  28. Mondal AK, Su D, Chen S, Sun B, Li K, Wang G (2014) A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance. RSC Adv 4(37):19476–19481

    Article  CAS  Google Scholar 

  29. Dong XC, Xu H, Wang XW et al (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213

    Article  CAS  PubMed  Google Scholar 

  30. Shen L, Uchaker E, Zhang X et al (2012) Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506

    Article  CAS  PubMed  Google Scholar 

  31. Lin Z, Yan X, Lang J et al (2015) Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. J Power Sources 279:358–364

    Article  CAS  Google Scholar 

  32. Xu Y, Wang L, Cao P et al (2016) Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors. J Power Sources 306:742–752

    Article  CAS  Google Scholar 

  33. Yan L, Kong H, Li ZJ (2013) Preparation and supercapacitive properties of 3D graphene/nickel aluminum layered double metal hydroxide. Acta Chim Sin 71(5):822–828

    Article  CAS  Google Scholar 

  34. Gao Z, Yang W, Wang J et al (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  35. Salunkhe RR, Jang K, Yu H et al (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J Alloys Compd 509(23):6677–6682

    Article  CAS  Google Scholar 

  36. Liu C, Jiang W, Hu F et al (2018) Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorg Chem Front 5(4):835–843

    Article  CAS  Google Scholar 

  37. Zeng ZZ, Zhu LZ, Han ES et al (2019) Soft-templating and hydrothermal synthesis of NiCo2O4 nanomaterials on Ni foam for high-performance. Ionics 25:2791–2803

    Article  CAS  Google Scholar 

  38. Xia QX, Hui KS, Hui KN et al (2015) Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)(2)-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors. J Mater Chem A 3(44):22102–22117

    Article  CAS  Google Scholar 

  39. Zhang L, Ou M, Yao H, Li Z, Qu D, Liu F, Wang J, Wang J, Li Z (2015) Enhanced supercapacitive performance of graphite-like C3N4 assembled with NiAl-layered double hydroxide. Electrochim Acta 186:292–301

    Article  CAS  Google Scholar 

  40. Tomboc GM, Jadhav HS, Kim H (2017) PVP assisted morphologycontrolled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem Eng J 308:202–213

    Article  CAS  Google Scholar 

  41. Zhu Y, Wang J, Wu Z et al (2015) An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J Power Sources 287(ISSN):307–315

    Article  CAS  Google Scholar 

  42. Zhao Y, He X, Chen R et al (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem Eng J 352:29–38

    Article  CAS  Google Scholar 

  43. Ye P, Dong H, Xu Y, Zhao C, Liu D (2018) NiCo2O4 surface coating Li[Ni0.03Mn1.97]O4 micro−/nano-spheres as cathode material for high-performance lithium ion battery. Appl Surf Sci 428:469–477

    Article  CAS  Google Scholar 

  44. Ghodbane O, Louro M, Coustan L et al (2013) Microstructural and morphological effects on charge storage properties in MnO2-carbon nanofibers based supercapacitors. J Electrochem Soc 160(11):A2315–A2321

    Article  CAS  Google Scholar 

  45. Li YH, Wu XW et al (2018) Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of Lithium-ion batteries. Ionics 24:1329–1337

    Article  CAS  Google Scholar 

  46. Bai Y, Liu MM, Sun J et al (2016) Fabrication of Ni-Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors. Ionics 22:535–544

    Article  CAS  Google Scholar 

  47. Meher SK, Justin P, Rao GR (2011) Microwave-mediatedsynthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073

    Article  CAS  PubMed  Google Scholar 

  48. Bai X, Liu Q, Liu JY et al (2019) All-solid state asymmetric supercapacitor based on NiCoAl layered double hydroxide nanopetals on robust 3D graphene and modified mesoporous carbon. Chem Eng J 328:873–883

    Article  CAS  Google Scholar 

  49. Zhang LL, Zhao S, Tian XN et al (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir ACS J Surf Colloids 26(22):17624–17628

    Article  CAS  Google Scholar 

  50. Liu ZQ, Chen GF, Zhou PL, Li N, Su YZ (2016) Building layered NixCo2x(OH)6x nanosheets decorated three-dimensional Ni frameworks for electrochemical applications. J Power Sources 317:1–9

    Article  CAS  Google Scholar 

  51. Zhu W, Lu Z, Zhang G et al (2013) Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process. J Mater Chem A 1(29):8327–8331

    Article  CAS  Google Scholar 

  52. Liu S, Hui KS, Hui KN (2016) Vertically stacked bilayer CuCo2O4/MnCO2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4(21):8061–8071

    Article  CAS  Google Scholar 

  53. Yang J, Yu C, Fan X (2014) 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv Energy Mater 4:1–8

Download references

Acknowledgments

The authors appreciate the contributions of the reviewers in ensuring the quality of the paper is improved. The authors would also like to thank Dr. Enshan Han in Hebei University of Technology at Tianjin for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhi Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zhu, L., Han, E. et al. Effect of templating agent on Ni, Co, Al-based layered double hydroxides for high-performance asymmetric supercapacitors. Ionics 26, 367–381 (2020). https://doi.org/10.1007/s11581-019-03201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03201-3

Keywords

Navigation