Skip to main content
Log in

Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cobalt ferrite magnetic nanoparticles (CoFe2O4-MNPs) were synthesized by hydrothermal and co-precipitation methods using different precursors such as nitrates, chlorides, and acetates, at different concentrations with/without surfactant under different growth conditions. The structural and morphological analyses reveal the formation of a single-phase CoFe2O4 in nanoplatelet-shaped NPs with average particle size between 11 and 26 nm depending on synthesis condition. The specific surface area of these NPs obtained by hydrothermal method was ~ 34 m2 g−1. Electrochemical performances of the obtained nanoparticles in a three-electrode configuration with a 6 M KOH electrolyte revealed a specific capacitance (C s) of 429 F/g at 0.5 A/g, with excellent capacitance retention of 98.8% after 6000 cycles at 10 A/g for the electro-active NPs synthesized by hydrothermal method at 200 °C for 18 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raj K, Moskowitz R, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149:174–180

    Article  CAS  Google Scholar 

  2. Gunther L (1990) Quantum tunnelling of magnetisation physics. Phys World 2:28

    Article  Google Scholar 

  3. Mazaleyrat F, Varga LK (2000) Ferromagnetic nanocomposites. J Magn Magn Mater 215:253–259

    Article  Google Scholar 

  4. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  CAS  Google Scholar 

  5. Obreja VVN (2014) Supercapacitors specialities-Materials review. AIP Conf Proc 1597:98–120

    Article  CAS  Google Scholar 

  6. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  7. Li YH, Huang KL, Liu SK, Yao ZF, Zhuang SX (2011) J Solid State Electrochem 15:587–592

  8. Zheng YZ, Ding HY, Zhang ML (2009) Mater Res Bull 44:403–407

  9. Song MS, Lee KM, Lee YR, Kim IY, Kim TW, Gunjakar JL, Hwang SJ (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114:22134–22140

  10. Zhu M, Wang Y, Meng D, Qin XZ, Diao G (2012) Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J Phys Chem C 116:16276–16285

    Article  CAS  Google Scholar 

  11. Bello A, Makgopa K, Fabiane M, Dodoo-Ahrin D, Ozoemena KI, Manyala N (2013) Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48:6707–6712

    Article  CAS  Google Scholar 

  12. Bello A, Fashedemi OO, Fabiane M, Lekitima JN, Ozoemena KI, Manyala N (2013) Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochim Acta 114:48–53

    Article  CAS  Google Scholar 

  13. Kumbhar VS, Jagadale AD, Shinde NM, Lokhande CD (2012) Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl Surf Sci 259:39–43

    Article  CAS  Google Scholar 

  14. He P, Yang K, Wang W, Dong F, Du L, Deng Y (2013) Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ J Electrochem 49:359

    Article  CAS  Google Scholar 

  15. Zhang YX, Hao XD, Diao ZP, Li J, Guan YM (2014) One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors. J Mater Lett 123:229–234

    Article  CAS  Google Scholar 

  16. Adam JD, Krishnaswamy SV, Talisa SH, Yoo KC (1990) Thin-film ferrites for microwave and millimeter-wave applications. J Magn Mater 83:419–424

    Article  CAS  Google Scholar 

  17. Lee JG, Park JY, Oh YJ, Kim CS (1998) Magnetic properties of CoFe2O4 thin films prepared by a sol-gel method. J Appl Phys 84(5):2801

  18. Bao N, Shen L, Padhan P, Gupta A (2008) Self-assembly and magnetic properties of shape-controlled monodisperse CoFe2O4 nanocrystals. J Appl Phys Lett 92:173101

  19. Pannaparayil T, Marande R, Komarneni S (1991) J Appl Phys 69:5349–5351

    Article  CAS  Google Scholar 

  20. Rozman M, Drofenik M (1995) Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc 78:2449–2455

    Article  CAS  Google Scholar 

  21. Komarneni S, Fregeau E, Breval E, Roy R (1998) J Am Ceram Soc 71:26–28

    Google Scholar 

  22. Sisk M, Kilbride I, Barker AJ (1995) Production of manganese zinc ferrites via the hydrothermal decomposition of metal (III) acetates and citrates. J Mater Sci Lett 14:153–154

    Article  CAS  Google Scholar 

  23. Shafi KVPM, Koltypin Y, Gedanken A, Prozorov R, Balogh J, Lendvai J, Felner IJ (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem 101:6409–6414

    Article  CAS  Google Scholar 

  24. Moumen N, Pileni MP (1996) New syntheses of cobalt ferrite particles in the range 2−5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. J Chem Mater 8:1128–1134

    Article  CAS  Google Scholar 

  25. Davis KJ, Wells S, Upadhayy RV, Charle SW, O'Grady KO, El Hilo M, Meaz T, Morup S (1995) J Magn Magn Mater 14:149

    Google Scholar 

  26. Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LIM, Munoz JS, Mikhov M (1998) J Magn Magn Mater 163:193

    Google Scholar 

  27. Blaskov V, Petkov V, Rusanov V, Martinez LIM, Martinez B, Munoz JS, Mikhov M (1996) J Magn Magn Mater 162:331

    Article  CAS  Google Scholar 

  28. Pham-Huu C, Keller N, Estournes C, Ehret G, Greneche JM, Ledoux MJ (2003) Microstructural investigation and magnetic properties of CoFe2O4 nanowires synthesized inside carbon nanotubes. J Phys Chem Chem Phys 5:3716

    Article  Google Scholar 

  29. Hoh JC, Yaacob II (2002) Polymer matrix templated synthesis: cobalt ferrite nanoparticles preparation. J Mater Res 17:3105

    Article  CAS  Google Scholar 

  30. Xinyong L, Kutal C (2003) Synthesis and characterization of superparamagnetic CoxFe3-xO4 nanoparticles. J Alloys Compd 349:264–268

    Article  Google Scholar 

  31. Lutterotti L, Matthies S, Wenk H (1999) MAUD: a friendly Java program for material analysis using diffraction. CPD NEWSLETTER 21:14–15

  32. Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. J Mater Lett 60:3548–3552

    Article  CAS  Google Scholar 

  33. Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269:217

    Article  CAS  Google Scholar 

  34. Hu G, Choi JH, Eom CB, Harris VG, Suzuki Y (2000) Structural tuning of the magnetic behavior in spinel-structure ferrite thin films. J Phys Rev 62:779

    Article  Google Scholar 

  35. Ferreira TAS, Waerenborgh JC, Mendonça MHRM, Nunes MR, Costa FM (2003) Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. J Solid State Sci 5:383–392

    Article  CAS  Google Scholar 

  36. Le-Trong H, Barnabe A, Presmanes L, Tailhades P (2008) Phase decomposition study in CoxFe3−xO4 iron cobaltites: synthesis and structural characterization of the spinodal transformation. J Solid State Sci 10:550–556

  37. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications, 1st edn. Academic Press, San Diego, 467 p

  38. Yu T, Shen ZX, Shi Y, Ding J (2002) Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J Phys Condens Matter 14:613

    Article  Google Scholar 

  39. Wang ZW, Downs RT, Pischedda V, Shetty R, Saxena SK, Zha CS, Zhao YS (2003) High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4. J Phys Rev 68:094101

    Article  Google Scholar 

  40. Ahmed MA, Ateia E, Salah LM, El-Gamal AA (2005) Structural and electrical studies on La3+ substituted Ni-Zn ferrites. J Mater Chem Phys 92:310–321

  41. Waldron RD (1955) Infrared spectra of ferrites. J Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  42. Li M, Mao Y, Yang H, Li W, Wang C, Liu P, Tong Y (2013) Controllable electrochemical synthesis of CoFe2O4 nanostructures on FTO substrate and their magnetic properties. New J Chem 37:3116–3120

    Article  CAS  Google Scholar 

  43. Liu C, Rondinone AJ, Zhang ZJ (2000) Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. J Pure Appl Chem 72:37

    CAS  Google Scholar 

  44. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14:15977–16009

    Article  Google Scholar 

  45. Poddar P, Gass J, Rebar DJ, Srinath S, Srikanth H, Morrison SA, Carpenter EE (2006) Magnetocaloric effect in ferrite nanoparticles. J Magn Magn Mater 307:227–231

    Article  CAS  Google Scholar 

  46. Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. J Chem Eur 15:7822–7829

    Article  CAS  Google Scholar 

  47. Du Tremolet de Lacheisserie E et Al (2000) Magnétisme I- Fondements. EDP Sciences, France

  48. Goh SC, Chia CH, Zakaria S, Yusoff M, Haw CY, Ahmadi S, Huang NM, Lim HN (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. J Mater Chem Phys 120:31–35

    Article  CAS  Google Scholar 

  49. Rao KS, Choudary GSVRK, Rao KH, Sujathad C (2015) Procedia Mater Sci 10:19–27

    Article  CAS  Google Scholar 

  50. He P, Yang K, Wang W, Dong F, Du L, Deng Y (2013) Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. J Electrochem 49(4):359–364

    CAS  Google Scholar 

  51. Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high- performance supercapacitors. J Power Sources 245:937–946

    Article  CAS  Google Scholar 

  52. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrogen Energy 39:15627–15638

  53. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25

  54. Bruke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37

  55. Portet C, Lillo-Rodenas MA, Linares-Solano A, Gogotsi Y (2009) Capacitance of KOH activated carbide-derived carbons. J Phys Chem Chem Phys 11:4943–4945

  56. Shanmugavani A, Kalpana D, KalaiSelvan R (2015) Electrochemical properties of CoFe2O4 nanoparticles as negative and Co(OH)2 and Co2Fe(CN)6 as positive electrodes for supercapacitors. J Mater Res Bull 71:133–141

  57. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. J Nanoscale 5:3793

  58. Shaik DP, Rosaiah P, Hussain OM (2015) Enhanced supercapacitive performance of nanocrystalline Mn3O4 synthesized by hydrothermal method. J Advances in Chemistry 12(1):3919–3933

  59. Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. J Ionics 15:107–110

  60. Sankar KV, Kalpana D, Selvan RK (2012) Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J Appl Electrochem 42:463–470

  61. Padmanathan N, Selladurai S (2014) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. J Ionics 20:479–487

Download references

Acknowledgements

This work is based upon research supported by General Direction of Scientific Research and Technological Development (DGRSDT) via the Algerian Ministry of Higher Education and Scientific Research as well as the South African Research Chairs Initiative (SARChI) in Carbon Technology and Materials of the Department of Science and Technology (DST) and the National Research Foundation (NRF) through the Algeria/South Africa collaboration program. We are also grateful to Prof. A.M. Strydom for the magnetic characterization done with the use of the MPMS system at the Department of Physics, University of Johannesburg. H. Kennaz acknowledges support of the University of Annaba and DGRSDT for the financial assistance provided for his PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennaz, H., Harat, A., Guellati, O. et al. Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J Solid State Electrochem 22, 835–847 (2018). https://doi.org/10.1007/s10008-017-3813-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3813-y

Keywords

Navigation