Skip to main content
Log in

Ultrathin Al2O3 layer modified LiNi0.6Co0.2Mn0.2O2 with Al-doping for high performance lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ni-rich oxide materials suffer poor rate capability and rapid capacity fading, which seriously hinder its further commercialization. In this study, an ultrathin Al2O3 coating layer on surface of the LiNi0.6Co0.2Mn0.2O2 (NCM) material was prepared with Al(OC4H9)4 in organic medium; the process followed by heat treatment achieves Al doping. The synergistic effect of surface modification and Al doping significantly enhances the capacity retention and rate performance, while the resistance to moisture is also improved. The coated sample with 2wt% Al2O3 shows superior electrochemical performances with an initial capacity of 175 mAh g−1 at 1 C and a retention of 80% after 500 cycles, which is 10% higher than the uncoated raw materials. In addition, it delivers 152 mAh g−1 at 10 C, suggesting an excellent rate capability. The substitution of Al3+ and the Al2O3 protective layer facilitates ion diffusion dynamic characteristic and improves electrochemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  2. Wu F, Zhou H, Bai Y, Wang H, Wu C (2015) Toward 5 V Li-ion batteries: quantum chemical calculation and electrochemical characterization of sulfone-based high-voltage electrolytes. ACS Appl Mater Interfaces 7:15098–15107

    Article  CAS  Google Scholar 

  3. Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F (2015) Hierarchical mesoporous Lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for Lithium-ion battery. ACS Appl Mater Interfaces 8:18832–18840

    Article  Google Scholar 

  4. Li L, Xu M, Yao Q, Chen Z, Song L, Zhang Z (2016) Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl Mater Interfaces 8:30879–30889

    Article  CAS  Google Scholar 

  5. Xia Y-F, Nie M, Wang Z-B, Yu F-D, Zhang Y, Zheng L-L (2015) Structural, morphological and electrochemical investigation of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized in different sintering conditions. Ceram Int 41:11815–11823

    Article  CAS  Google Scholar 

  6. Zhang Y, Chen H, Guo K, Zhang X (2017) Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation. Appl Energ 199:1–12

    Article  Google Scholar 

  7. Ju S-H, Kang I-S, Lee Y-S, Shin W-K, Kim S, Shin K (2014) Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating. ACS Appl Mater Interfaces 6:2546–2552

    Article  CAS  Google Scholar 

  8. Chen Y, Zhang Y., Chen B, Wang, Lu. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27

  9. Chen Y, Li Y, Tang S, Lei T, Deng S, Xue (2018) Enhanced electrochemical properties of the Cd-modified LiNi0.6Co0.2Mn0.2O2 cathode materials at high cut-off voltage. J Power Sources 395:403–413

  10. Liu S, Zhang C, Su Q, Li L, Su J, Huang T (2017) Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by Lithium-ion conductor surface modification. Electrochim Acta 222:171–177

    Article  Google Scholar 

  11. Meng K, Wang Z, Guo H, Li X, Wang D (2016) Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3. Electrochim Acta 211:822–831

    Article  CAS  Google Scholar 

  12. Min K, Park K, Park S-Y, Seo S-W, Choi B, Cho E (2018) Residual Li reactive coating with Co3O4 for superior electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material. J Electrochemical Society 165:A79–A85

    Article  CAS  Google Scholar 

  13. Zhuang GV, Chen G, Shim J, Song X, Ross PN (2004) Richardson TJ. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power. J Power Sources 134:293–297

  14. Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J (2002) Amine. Surface characterization of electrodes from high power Lithium-ion batteries. J electrochemical society 149:A1358

  15. Gao S, Cheng YT, Shirpour M (2019) Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Lithium-ion batteries. ACS Appl Mater Interfaces 11:982–989

    Article  CAS  Google Scholar 

  16. Schindler S, Bauer M, Petzl M, Danzer MA (2016) Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells. J Power Sources 304:170–180

    Article  CAS  Google Scholar 

  17. Syzdek J, Marcinek M, Kostecki R (204) Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes. J Power Sources 245:739–744

  18. Gupta H, Singh SK, Singh VK, Tripathi AK, Srivastava N, Tiwari RK (2018) Development of polymer electrolyte and cathode material for Li-batteries. J Electrochemical Society 166:A5187–A5192

    Article  Google Scholar 

  19. Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74

  20. Yang M, Zhao X, Bian Y, Ma L, Ding Y, Shen X (2012) Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. J Mater Chem 22:6200

    Article  CAS  Google Scholar 

  21. Becker D, Borner M, Nolle R, Diehl M, Klein S, Rodehorst U (2019) Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries ACS Appl Mater 11:18404-18414

  22. Guo S, Yuan B, Zhao H, Hua D, Shen Y, Sun C (2019) Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy 58:673–679

    Article  CAS  Google Scholar 

  23. Zheng J-C, Yang Z, He Z-J, Tong H, Yu W-J, Zhang J-F (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 53:613–621

    Article  CAS  Google Scholar 

  24. Cho W, Kim S-M, Lee K-W, Song J-H, Jo Y-N (2016) Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim Acta 198:77–83

    Article  CAS  Google Scholar 

  25. Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo X-D (2014) Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton T 43:14824–14832

    Article  CAS  Google Scholar 

  26. Mäntymäki M, Heikkilä MJ, Puukilainen E, Mizohata K, Marchand B, Räisänen J (2015) Atomic layer deposition of AlF3 thin films using halide precursors. Chem Mater 27:604–611

    Article  Google Scholar 

  27. Makaremi M, Mortazavi B (2018) 2D hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: a first principles study. Materials Today Energy 8:22–28

    Article  Google Scholar 

  28. Chen Y, Zhang Y, Wang F, Wang Z, Zhang Q (2014) Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J Alloy Compd 611:135–141

    Article  CAS  Google Scholar 

  29. Cho W, Kim S-M, Song JH, Yim T, Woo S-G, Lee K-W (2015) Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 282:45–50

    Article  CAS  Google Scholar 

  30. Kong J-Z, Ren C, Tai G-A, Zhang X, Li A-D, Wu D (2014) Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. J Power Sources 266:433–439

    Article  CAS  Google Scholar 

  31. Lai F, Zhang X, Wang H, Hu S, Wu X, Wu Q (2016) Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries. ACS Appl Mater Interfaces 8:21656–21665

    Article  CAS  Google Scholar 

  32. Li G, Zhang Z, Wang R, Huang Z, Zuo Z, Zhou H (2016) Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2 cathode. Electrochim Acta 212:399–407

    Article  CAS  Google Scholar 

  33. Li L, Zhang Z, Fu S, Liu Z, Liu Y (2018) Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J Alloy Compd 768:582–590

    Article  CAS  Google Scholar 

  34. Qiu Q, Huang X, Chen Y, Tan Y, Lv W (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516

    Article  CAS  Google Scholar 

  35. Wise AM, Ban C, Weker JN, Misra S, Cavanagh AS, Wu Z (2015) Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem Mater 27:6146–6154

    Article  CAS  Google Scholar 

  36. Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J Mater Chem A 3:894–904

    Article  CAS  Google Scholar 

  37. Wang J, Du C, Yan C, He X, Song B, Yin G (2015) Al2O3 coated concentration-gradient Li[Ni0.73Co0.12Mn0.15]O2 cathode material by freeze drying for long-life lithium ion batteries. Electrochim Acta 174:1185–1191

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (51762006, 51964013, and 51864007), Guangxi Key Research and Development Program of Science and Technology (GUIKE AB17195065 and AB17129011), Guangxi Technology Base and Talent Subject (GUIKE AD18126001 and GUIKE AD17195084), and Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKFKT201807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyan Lai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, G., Lai, F. et al. Ultrathin Al2O3 layer modified LiNi0.6Co0.2Mn0.2O2 with Al-doping for high performance lithium ion batteries. Ionics 26, 2147–2156 (2020). https://doi.org/10.1007/s11581-019-03416-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03416-4

Keywords

Navigation