Skip to main content
Log in

Studies on structural and ionic transport in biopolymer electrolytes based on alginate-LiBr

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of solid biopolymer electrolytes (SBEs) system based on alginate doped with LiBr was successfully prepared via solution casting. The structural and ionic conduction of SBEs were conducted to correlate the effect of LiBr in alginate by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and impedance spectroscopy. From the infrared study, SBEs exhibited the occurrence of complexation between lithium-ion and carboxylate ion (COO) of alginate through the peak intensity and wavenumber shift. The alginate doped with 15 wt.% LiBr achieved the highest ionic conductivity of 7.46 × 10−5 S/cm at ambient temperature, suggesting its good conduction stability as well as amorphous phase. The IR-deconvolution approach revealed that the ionic conductivity of SBEs system is influenced by both the ionic mobility and diffusion coefficient of transport properties. Based on LSV analysis, it’s implies that the present SBEs have the potentiality to be applied in electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen C, Hu L (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res 51(12):3154–3165. https://doi.org/10.1021/acs.accounts.8b00391

    Article  CAS  PubMed  Google Scholar 

  2. Zhou B, Zuo C, Xiao Z, Zhou X, He D, Xie X, Xue Z (2018) Self-healing polymer electrolytes formed via dual-networks: a new strategy for flexible lithium metal batteries. Chem Eur J 24(72):19200–19207. https://doi.org/10.1002/chem.201803943

    Article  CAS  PubMed  Google Scholar 

  3. Kurapati S, Gunturi SS, Nadella KJ, Erothu H (2019) Novel solid polymer electrolyte based on PMMA: CH3COOLi effect of salt concentration on optical and conductivity studies. Polym Bull:1–19. doi:https://doi.org/10.1007/s00289-018-2659-5

  4. Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143. https://doi.org/10.1016/j.progpolymsci.2017.12.004

    Article  CAS  Google Scholar 

  5. Karthika P, Sundaresan B (2018) AC impedance, surface & TGA/DTA analysis of PVC-LiNO3-CdO. Mech Mater Sci Eng J 14

  6. Jia W, Li Z, Wu Z, Wang L, Wu B, Wang Y, Cao Y, Li J (2018) Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics 315:7–13. https://doi.org/10.1016/j.ssi.2017.11.026

    Article  CAS  Google Scholar 

  7. Singh R, Baghel J, Shukla S, Bhattacharya B, Rhee H-W, Singh PK (2014) Detailed electrical measurements on sago starch biopolymer solid electrolyte. Phase Transit 87(12):1237–1245. https://doi.org/10.1080/01411594.2014.944911

    Article  CAS  Google Scholar 

  8. Gong S-D, Huang Y, Cao H-J, Lin Y-H, Li Y, Tang S-H, Wang M-S, Li X (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307:624–633. https://doi.org/10.1016/j.jpowsour.2016.01.030

    Article  CAS  Google Scholar 

  9. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polym 6(9):2371–2385. https://doi.org/10.3390/polym6092371

    Article  CAS  Google Scholar 

  10. Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics 20(9):1235–1245. https://doi.org/10.1007/s11581-014-1096-1

    Article  CAS  Google Scholar 

  11. Kadir MFZ, Hamsan MH (2018) Green electrolytes based on dextran-chitosan blend and the effect of NH4SCN as proton provider on the electrical response studies. Ionics 24(8):2379–2398. https://doi.org/10.1007/s11581-017-2380-7

    Article  CAS  Google Scholar 

  12. Wang C-S, Virgilio N, Wood-Adams PM, Heuzey M-C (2018) A gelation mechanism for gelatin/polysaccharide aqueous mixtures. Food Hydrocoll 79:462–472. https://doi.org/10.1016/j.foodhyd.2018.01.016

    Article  CAS  Google Scholar 

  13. Pawlicka A, Firmino A, Vieira D, Sentanin F, Grote JG, Kajzar F Gelatin-and DNA-based ionic conducting membranes for electrochromic devices. In: Optical materials in defence systems technology VI, 2009. International Society for Optics and Photonics, p 74870J. doi:https://doi.org/10.1117/12.835913

  14. Ahmad NH, Isa MIN (2015) Structural and ionic conductivity studies of CMC based polymerelectrolyte doped with NH4Cl. In: Advanced Materials Research. Trans Tech Publ, pp 247–252. doi:https://doi.org/10.4028/www.scientific.net/AMR.1107.247

  15. Rahmani V, Sheardown H (2018) Protein-alginate complexes as pH−/ion-sensitive carriers of proteins. Int J Pharm 535(1–2):452–461. https://doi.org/10.1016/j.ijpharm.2017.11.039

    Article  CAS  PubMed  Google Scholar 

  16. Ravichandran V, Jayakrishnan A (2018) Synthesis and evaluation of anti-fungal activities of sodium alginate-amphotericin B conjugates. Int J Biol Macromol 108:1101–1109. https://doi.org/10.1016/j.ijbiomac.2017.11.030

    Article  CAS  PubMed  Google Scholar 

  17. Lacoste C, El Hage R, Bergeret A, Corn S, Lacroix P (2018) Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydr Polym 184:1–8. https://doi.org/10.1016/j.carbpol.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  18. Yahya MZA, Arof AK (2004) Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr Polym 55(1):95–100. https://doi.org/10.1016/j.carbpol.2003.08.018

    Article  CAS  Google Scholar 

  19. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23(10):2697–2706. https://doi.org/10.1007/s11581-016-1886-8

    Article  CAS  Google Scholar 

  20. Shukur MF, Ithnin R, Kadir MFZ (2014) Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor. Electrochim Acta 136:204–216. https://doi.org/10.1016/j.electacta.2014.05.075

    Article  CAS  Google Scholar 

  21. Aprilliza M (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012019. doi:https://doi.org/10.1088/1757-899X/188/1/012019

  22. Zhang N, Xu J, Gao X, Fu X, Zheng D (2017) Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks. Carbohydr Polym 156:435–442. https://doi.org/10.1016/j.carbpol.2016.08.101

    Article  CAS  PubMed  Google Scholar 

  23. Tong Z, Chen Y, Liu Y, Tong L, Chu J, Xiao K, Zhou Z, Dong W, Chu X (2017) Preparation, characterization and properties of alginate/poly (γ-glutamic acid) composite microparticles. Mar Drugs 15(4):91. https://doi.org/10.3390/md15040091

  24. Jiang J-K, Mu Y, Yu H-Q (2019) Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. J Colloid Interface Sci 535:318–324. https://doi.org/10.1016/j.jcis.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  25. Montaser AS, Rehan M, El-Naggar ME (2019) pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int J Biol Macromol 124:1016–1024. https://doi.org/10.1016/j.ijbiomac.2018.11.252

    Article  CAS  PubMed  Google Scholar 

  26. Rasali NMJ, Nagao Y, Samsudin AS (2018) Enhancement on amorphous phase in solid biopolymer electrolyte based alginate doped NH4NO3. Ionics:1–14. doi:https://doi.org/10.1007/s11581-018-2667-3

  27. Sabadini RC, Raphael E, Marques ST, Filho PB, Pawlicka A (2014) Alginate-Jeffamine covalently crosslinked hydrogel. Mol Cryst Liq Cryst 603(1):240–247. https://doi.org/10.1080/15421406.2014.967628

    Article  CAS  Google Scholar 

  28. Sampathkumar L, Selvin PC, Selvasekarapandian S, Perumal P, Chitra R, Muthukrishnan M (2019) Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 25(3):1067–1082. https://doi.org/10.1007/s11581-019-02857-1

    Article  CAS  Google Scholar 

  29. Mobarak NN, Jumaah FN, Ghani MA, Abdullah MP, Ahmad A (2015) Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim Acta 175:224–231. https://doi.org/10.1016/j.electacta.2015.02.200

    Article  CAS  Google Scholar 

  30. Che Balian SR, Ahmad A, Mohamed NS (2016) The effect of Lithium iodide to the properties of carboxymethyl κ-carrageenan/carboxymethyl cellulose polymer electrolyte and dye-sensitized solar cell performance. Polym 8 (5). doi:https://doi.org/10.3390/polym8050163

  31. Lopes S, Bueno L, Aguiar Júnior FD, Finkler C (2017) Preparation and characterization of alginate and gelatin microcapsules containing Lactobacillus rhamnosus. Anais da Academia Brasileira de Ciências (AHEAD):0-0. Doi:https://doi.org/10.1590/0001-3765201720170071

  32. Kadir MFZ, Salleh NS, Hamsan MH, Aspanut Z, Majid NA, Shukur MF (2018) Biopolymeric electrolyte based on glycerolized methyl cellulose with NH4Br as proton source and potential application in EDLC. Ionics 24(6):1651–1662. https://doi.org/10.1007/s11581-017-2330-4

    Article  CAS  Google Scholar 

  33. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358(8):1104–1112. https://doi.org/10.1016/j.jnoncrysol.2012.02.004

    Article  CAS  Google Scholar 

  34. Mazuki NF, Fuzlin AF, Saadiah MA, Samsudin AS (2018) An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics:1–11. doi:https://doi.org/10.1007/s11581-018-2734-9

  35. Shukur MF, Hamsan MH, Kadir MFZ (2018) Plasticized and plasticizer free lithium acetate doped polyvinyl alcohol–chitosan blend solid polymer electrolytes: comparative studies. In: Journal of Physics: Conference Series. vol 1. IOP Publishing, p 012001. doi:https://doi.org/10.1088/1742-6596/1123/1/012001

  36. Monisha S, Mathavan T, Selvasekarapandian S, Benial AMF, Aristatil G, Mani N, Premalatha M (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47. https://doi.org/10.1016/j.carbpol.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  37. Bakhtin S, Shved E, Bespal'ko Y (2017) Nucleophile-electrophile interactions in the reaction of oxiranes with carboxylic acids in the presence of tertiary amines. J Phys Org Chem 30(12). https://doi.org/10.1002/poc.3717

  38. Rasali NMJ, Muzakir SK, Samsudin AS (2017) A study on dielectric properties of the cellulose derivative-NH4Br-glycerol-based the solid polymer electrolyte system. Makara Journal of Technology 21(2):65–69. https://doi.org/10.7454/mst.v21i2.3082

  39. Iwaki YO, Escalona MH, Briones JR, Pawlicka A (2012) Sodium alginate-based ionic conducting membranes. Mol Cryst Liq Cryst 554(1):221–231. https://doi.org/10.1080/15421406.2012.634329

    Article  CAS  Google Scholar 

  40. Gao C, Pollet E, Avérous L (2017) Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocoll 63:414–420. https://doi.org/10.1016/j.foodhyd.2016.09.023

    Article  CAS  Google Scholar 

  41. Zhang Y, Wang C, Liu Y, Jiang W, Han G (2018) Preparation and characterization of composite scaffold of alginate and cellulose nanofiber from ramie. Text Res J:0040517518809041. Doi:https://doi.org/10.1177/0040517518809041

  42. Larosa C, Salerno M, de Lima JS, Meri RM, da Silva MF, de Carvalho LB, Converti A (2018) Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol 115:900–906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  43. Choe SR, Haldorai Y, Jang S-C, Rethinasabapathy M, Lee Y-C, Han Y-K, Jun Y-S, Roh C, Huh YS (2018) Fabrication of alginate/humic acid/Fe-aminoclay hydrogel composed of a grafted-network for the efficient removal of strontium ions from aqueous solution. Environ Technol Innov 9:285–293. https://doi.org/10.1016/j.eti.2017.12.008

    Article  Google Scholar 

  44. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polym 37(8):1371–1376. https://doi.org/10.1016/0032-3861(96)81134-7

    Article  CAS  Google Scholar 

  45. Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222. https://doi.org/10.1016/j.electacta.2017.03.118

    Article  CAS  Google Scholar 

  46. Samsudin AS, Saadiah MA (2018) Ionic conduction study of enhanced amorphous solid bio-polymer electrolytes based carboxymethyl cellulose doped NH4Br. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2018.05.027

  47. Correa E, Moncada ME, Zapata VH (2017) Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications. Mater Lett 205:155–157. https://doi.org/10.1016/j.matlet.2017.06.046

    Article  CAS  Google Scholar 

  48. Han Y, Yu M, Wang L (2018) Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag Shelf Life 15:35–42. https://doi.org/10.1016/j.fpsl.2017.11.001

    Article  Google Scholar 

  49. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M (2019) Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes. Polym Bull:1–26. doi:https://doi.org/10.1007/s00289-018-02670-2

  50. Kadir MFZ, Aspanut Z, Yahya R, Arof AK (2011) Chitosan–PEO proton conducting polymer electrolyte membrane doped with NH4NO3. Mater Res Innov 15(sup2):s164–s167. https://doi.org/10.1179/143307511X13031890748812

    Article  Google Scholar 

  51. Salman YAK, Abdullah OG, Hanna RR, Aziz SB (2018) Conductivity and electrical properties of chitosan-methylcellulose blend biopolymer electrolyte incorporated with lithium tetrafluoroborate. Int J Electrochem Sci 13:3185–3199. https://doi.org/10.20964/2018.04.25

    Article  CAS  Google Scholar 

  52. Aziz S, Abdullah R, Rasheed M, Ahmed H (2017) Role of ion dissociation on DC conductivity and silver nanoparticle formation in PVA: AgNt based polymer electrolytes: deep insights to ion transport mechanism. Polym 9(8):338. https://doi.org/10.3390/polym9080338

    Article  CAS  Google Scholar 

  53. Reddy SG, Thakur A (2018) Thermal stability and kinetics of sodium alginate and lignosulphonic acid blends. Iran J Mater Sci Eng 15(3):53–59. https://doi.org/10.22068/ijmse.15.3.53

    Article  Google Scholar 

  54. Yang M, Shi J, Xia Y (2018) Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films. Int J Biol Macromol 107:2686–2694. https://doi.org/10.1016/j.ijbiomac.2017.10.162

    Article  CAS  PubMed  Google Scholar 

  55. Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502. https://doi.org/10.1016/S0079-6700(00)00032-0

    Article  CAS  Google Scholar 

  56. Liew C-W, Ramesh S (2013) Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellul 20(6):3227–3237. https://doi.org/10.1007/s10570-013-0079-0

    Article  CAS  Google Scholar 

  57. Liu Y, Zhang C-J, Zhao J-C, Guo Y, Zhu P, Wang D-Y (2016) Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior. Carbohydr Polym 139:106–114. https://doi.org/10.1016/j.carbpol.2015.12.044

    Article  CAS  PubMed  Google Scholar 

  58. Swamy TMM, Ramaraj B, Lee JH (2008) Sodium alginate and its blends with starch: thermal and morphological properties. J Appl Polym Sci 109(6):4075–4081. https://doi.org/10.1002/app.28625

    Article  CAS  Google Scholar 

  59. Mary IA, Selvanayagam S, Selvasekarapandian S, Srikumar SR, Ponraj T, Moniha V (2019) Lithium ion conducting membrane based on K-carrageenan complexed with lithium bromide and its electrochemical applications. Ionics:1–17. doi:https://doi.org/10.1007/s11581-019-03150-x

  60. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763. https://doi.org/10.1016/j.carbpol.2012.07.065

    Article  CAS  PubMed  Google Scholar 

  61. Ma X-H, Xu Z-L, Liu Y, Sun D (2010) Preparation and characterization of PFSA–PVA–SiO2/PVA/PAN difunctional hollow fiber composite membranes. J Membr Sci 360(1–2):315–322. https://doi.org/10.1016/j.memsci.2010.05.031

    Article  CAS  Google Scholar 

  62. Li X, Xie H, Lin J, Xie W, Ma X (2009) Characterization and biodegradation of chitosan–alginate polyelectrolyte complexes. Polym Degrad Stab 94(1):1–6. https://doi.org/10.1016/j.polymdegradstab.2008.10.017

    Article  CAS  Google Scholar 

  63. Perumal P, Selvin PC, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics 24(10):3259–3270. https://doi.org/10.1007/s11581-018-2507-5

    Article  CAS  Google Scholar 

  64. Nithya S, Selvasekarapandian S, Karthikeyan S, Vinoth Pandi D (2015) Effect of propylene carbonate on the ionic conductivity of polyacrylonitrile-based solid polymer electrolytes. J Appl Polym Sci 132(14). https://doi.org/10.1002/app.41743

  65. Kumar LS, Selvin PC, Selvasekarapandian S, Manjuladevi R, Monisha S, Perumal P (2018) Tamarind seed polysaccharide biopolymer membrane for lithium-ion conducting battery. Ionics:1–11. doi:https://doi.org/10.1007/s11581-018-2541-3

  66. Unnisa CN, Chitra S, Selvasekarapandian S, Monisha S, Devi GN, Moniha V, Hema M (2018) Development of poly (glycerol suberate) polyester (PGS)–PVA blend polymer electrolytes with NH 4 SCN and its application. Ionics 24(7):1979–1993. https://doi.org/10.1007/s11581-018-2466-x

    Article  CAS  Google Scholar 

  67. Rezvanian M, Ahmad N, Amin MCIM, Ng S-F (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol 97:131–140. https://doi.org/10.1016/j.ijbiomac.2016.12.079

    Article  CAS  PubMed  Google Scholar 

  68. Muchakayala R, Song S, Gao S, Wang X, Fan Y (2017) Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym Test 58:116–125. https://doi.org/10.1016/j.polymertesting.2016.12.014

    Article  CAS  Google Scholar 

  69. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. PCCP 16(5):1856–1867. https://doi.org/10.1039/C3CP53830C

    Article  CAS  PubMed  Google Scholar 

  70. Arof AK, Noor IM, Buraidah MH, Bandara TMWJ, Careem MA, Albinsson I, Mellander B-E (2017) Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochim Acta 251:223–234. https://doi.org/10.1016/j.electacta.2017.08.129

    Article  CAS  Google Scholar 

  71. Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO (x-1)(10≤ x≤ 50). Electrochim Acta 285:30–46. https://doi.org/10.1016/j.electacta.2018.07.233

    Article  CAS  Google Scholar 

  72. Kim D-S, Woo JC, Youk JH, Manuel J, Ahn J-H (2014) Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries. Mater Res Bull 58:208–212. https://doi.org/10.1016/j.materresbull.2014.01.047

    Article  CAS  Google Scholar 

  73. Neto MJ, Leones R, Sentanin F, Esperanca JMSS, Medeiros MJ, Pawlicka A, Silva MM (2014) Ionic liquids for solid-state electrolytes and electrosynthesis. J Electroanal Chem 714:63–69. https://doi.org/10.1016/j.jelechem.2013.12.013

    Article  CAS  Google Scholar 

  74. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2018) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25:1–11. https://doi.org/10.1007/s11581-018-2687-z

    Article  CAS  Google Scholar 

  75. Shukur MF, Kadir MFZ (2015) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics 21(1):111–124. https://doi.org/10.1007/s11581-014-1157-5

    Article  CAS  Google Scholar 

  76. Fuzlin AF, Rasali NMJ (2018) Samsudin AS Effect on ammonium bromide in dielectric behavior based alginate solid biopolymer electrolytes. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012080. doi:https://doi.org/10.1088/1757-899X/342/1/012080

  77. Perumal P, Selvin PC, Selvasekarapandian S, Sivaraj P (2019) Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater Today-Proc 8:196–202. https://doi.org/10.1016/j.matpr.2019.02.100

  78. Rasali NMJ (2018) Samsudin AS Characterization on ionic conductivity of solid bio-polymer electrolytes system based alginate doped ammonium nitrate via impedance spectroscopy. In: AIP Conference Proceedings. vol 1. AIP Publishing, p 020224. doi:https://doi.org/10.1063/1.5066865

  79. Rani MSA, Ahmad A, Mohamed NS (2018) A comprehensive investigation on electrical characterization and ionic transport properties of cellulose derivative from kenaf fibre-based biopolymer electrolytes. Polym Bull:1–14. doi:https://doi.org/10.1007/s00289-018-2320-3

  80. Sonia MML, Anand S, Vinosel VM, Janifer MA, Pauline S, Manikandan A (2018) Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2− xO4 ferrite nano-crystallites synthesized by sol-gel route. J Magn Magn Mater 466:238–251. https://doi.org/10.1016/j.jmmm.2018.07.017

    Article  CAS  Google Scholar 

  81. Liew C-W, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5):1869–1875. https://doi.org/10.1007/s10008-012-1651-5

    Article  CAS  Google Scholar 

  82. Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22(11):2157–2167. https://doi.org/10.1007/s11581-016-1731-0

    Article  CAS  Google Scholar 

  83. Othman L, Chew KW, Osman Z (2007) Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics 13(5):337–342. https://doi.org/10.1007/s11581-007-0120-0

    Article  CAS  Google Scholar 

  84. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 3(1):1–17. https://doi.org/10.1016/j.jsamd.2018.01.002

  85. Mazuki NF, Rasali NMJ, Saadiah MA (2018) Samsudin AS Irregularities trend in electrical conductivity of CMC/PVA-NH4Cl based solid biopolymer electrolytes. In: AIP Conference Proceedings. vol 1. AIP Publishing, p 020221. doi:https://doi.org/10.1063/1.5066862

  86. Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300(1–2):104–110. https://doi.org/10.1016/j.memsci.2007.05.014

    Article  CAS  Google Scholar 

  87. Ramlli MA, Bashirah NAA (2018) Isa MIN Ionic conductivity and structural analysis of 2-hyroxyethyl cellulose doped with glycolic acid solid biopolymer electrolytes for solid proton battery. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012038. doi:https://doi.org/10.1088/1757-899X/440/1/012038

  88. Zainuddin NK, Rasali NMJ, Samsudin AS (2018) Study on the effect of PEG in ionic transport for CMC-NH4Br-based solid polymer electrolyte. Ionics:1–14. doi:https://doi.org/10.1007/s11581-018-2505-7

  89. Rasali NMJ, Samsudin AS (2017) Ionic transport properties of protonic conducting solid biopolymer electrolytes based on enhanced carboxymethyl cellulose-NH4Br with glycerol. Ionics:1–12. doi:https://doi.org/10.1007/s11581-017-2318-0

  90. Zainuddin NK, Samsudin AS (2018) Investigation on the effect of NH4Br at transport properties in K–carrageenan based biopolymer electrolytes via structural and electrical analysis. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2018.01.004

  91. Chai MN, Isa MIN (2016) Novel proton conducting solid bio-polymer electrolytes based on carboxymethyl cellulose doped with oleic acid and plasticized with glycerol. Sci Rep 6:27328. https://doi.org/10.1038/srep27328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr Appl Phys 9(2):329–332. https://doi.org/10.1016/j.cap.2008.03.002

    Article  Google Scholar 

  93. Liew C-W, Ramesh S (2015) Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydr Polym 124:222–228. https://doi.org/10.1016/j.carbpol.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  94. Samsudin AS, Isa MIN (2015) Conductivity study on plasticized solid bio-electrolytes CMC-NH4Br and application in solid-state proton batteries. J Teknol 78(6–5). https://doi.org/10.11113/jt.v78.8997

  95. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2019) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull:1–25. https://doi.org/10.1007/s00289-019-02822-y

  96. Aziz SB, Abdullah RM, Kadir MFZ, Ahmed HM (2018) Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.11.081

Download references

Acknowledgments

The authors would like to thank Ministry of High Education (MOHE) for FRGS (RDU 1901114) and UMP internal grant (RDU 190389), Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang for Master Research Scheme (MRS), Japan Advanced Institute of Science and Technology (JAIST) and the member of Ionic Materials Team for the help and support given for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Samsudin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuzlin, A.F., Nagao, Y., Misnon, I.I. et al. Studies on structural and ionic transport in biopolymer electrolytes based on alginate-LiBr. Ionics 26, 1923–1938 (2020). https://doi.org/10.1007/s11581-019-03386-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03386-7

Keywords

Navigation