Skip to main content

Advertisement

Log in

Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

α-Ni(OH)2 has attracted great attention as a cathode material for alkaline secondary batteries (ASBs) because of its high theoretical capacity and small volume change during charge/discharge cycles. However, poor cycling stability and low electronic conductivity of α-Ni(OH)2 severely hinder its development and practical applications in ASBs. In this work, α-Ni(OH)2/graphene nanosheet composite was successfully fabricated by a facile homogeneous precipitation method. The nanocomposite is composed of α-Ni(OH)2 nanoflowers decorated homogeneously on the surfaces of graphene nanosheets. When evaluated as cathode material for ASBs, this α-Ni(OH)2/graphene nanocomposite exhibits much enhanced high-rate capability and cycling stability compared to the pure α-Ni(OH)2 due to the improved electrochemical reaction kinetic, enhanced electronic conductivity, and hierarchical nanostructure. For example, the α-Ni(OH)2/graphene nanocomposite presents a rate retention of 74.8% as the current density increasing from 250 to 5000 mA g−1, much higher than that (49.0%) of pure α-Ni(OH)2; moreover, at a current density of 2000 mA g−1, the α-Ni(OH)2/graphene nanocomposite still maintains a reversible capacity of 177 mA h g−1 after 200 cycles, which is four times higher than that (41 mA h g−1) of the pure α-Ni(OH)2. The attractive electrochemical performances and facile synthesis route made the prepared α-Ni(OH)2/graphene nanocomposite become a promising electrode material for ASBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang M, Li M, Niu CJ, Li Q, Mai LQ (2019) Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv Funct Mater 29(11):1807847

    Article  Google Scholar 

  2. Cairns EJ, Albertus P (2010) Batteries for electric and hybrid-electric vehicles. Annu Rev Chem Biomo 1:299–320

    Article  CAS  Google Scholar 

  3. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. P Roy Soc Lond A Mat 471(2174):20140792

    Article  Google Scholar 

  4. Liu HB, Xiang L, Jin Y (2006) Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability. Cryst Growth Des 6(1):283–286

    Article  CAS  Google Scholar 

  5. Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3(2):174–189

    Article  CAS  Google Scholar 

  6. Béléké AB, Mizuhata M (2010) Electrochemical properties of nickel–aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J Power Sources 195(22):7669–7676

    Article  Google Scholar 

  7. Liu B, Zhang YS, Yuan HT, Yang HB, Yang E (2000) Electrochemical studies of aluminum substituted α-Ni(OH)2 electrodes. Int J Hydrog Energy 25(4):333–337

    Article  CAS  Google Scholar 

  8. Wang X, Liu JY, Wang YY, Zhao CM, Zheng WT (2014) Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater Res Bull 52:89–95

    Article  CAS  Google Scholar 

  9. Cao MH, He XY, Chen J, Hu CW (2007) Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst Growth Des 7(1):170–174

    Article  CAS  Google Scholar 

  10. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. Int J Hydrog Energy 29(8):889–896

    Article  CAS  Google Scholar 

  11. Li JL, Aslam MK, Chen C (2018) One-pot hydrothermal synthesis of porous α-Ni(OH)2/C composites and its application in Ni/Zn alkaline rechargeable battery. J Electrochem Soc 16(5):A910–A917

    Article  Google Scholar 

  12. Wang HL, Casalongue HS, Liang YY, Dai HJ (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  Google Scholar 

  13. Shahid M, Liu JL, Shakir I, Warsi MF, Nadeem M, Kwon YU (2012) Facile approach to synthesize Ni(OH)2 nanoflakes on MWCNTs for high performance electrochemical supercapacitors. Electrochim Acta 85:243–247

    Article  CAS  Google Scholar 

  14. Mao ML, Yan FL, Cui CY, Ma JM, Zhang M, Wang TH, Wang CS (2017) Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17(6):3830–3836

    Article  CAS  Google Scholar 

  15. Li L, Chen Z, Zhang M (2018) Mo2C embedded in S-doped carbon nanofibers for high-rate performance and long-life time Na-ion batteries. Solid State Ionics 323:151–156

    Article  CAS  Google Scholar 

  16. Duan Z-Q, Sun Y-C, Liu Y-T, Xie X-M, Zhu X-D (2014) Scalable production of transition metal disulphide/graphite nanoflake composites for high-performance lithium storage. RSC Adv 4:41543–41550

    Article  CAS  Google Scholar 

  17. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279

    Article  Google Scholar 

  18. Yang T, Liu YK, Zhang M (2017) Improving the electrochemical properties of Cr-SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics 308:1–7

    Article  CAS  Google Scholar 

  19. Wei JH, Gao XT, Tan SP, Wang F, Zhu XD, Yin GP (2017) Acetylene black loaded on graphene as a cathode material for boosting the discharging performance of Li/SOCl2 battery. Int J Electrochem Sci 12:898–905

    Article  CAS  Google Scholar 

  20. Pan L, Zhu XD, Xie XM, Liu YT (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25(22):3341–3350

    Article  CAS  Google Scholar 

  21. Liu YT, Zhu XD, Duan Z, Xie XM (2013) Flexible and robust MoS2–graphene hybrid paper cross-linked by a polymer ligand: a high-performance anode material for thin film lithium-ion batteries. Chem Commun 49(87):10305–10307

    Article  CAS  Google Scholar 

  22. Huang Z, Chen Z, Ding SS, Chen CM, Zhang M (2018) Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324:267–275

    Article  CAS  Google Scholar 

  23. Gao XT, Liu YT, Zhu XD, Yan DJ, Wang C, Feng YJ, Sun KN (2018) V2O5 nanoparticles confined in three−dimensionally organized, porous nitrogen−doped graphene frameworks: flexible and free−standing cathodes for high performance lithium storage. Carbon 140:218–226

    Article  CAS  Google Scholar 

  24. Gao XT, Zhu XD, Le SR, Yan DJ, Qu CY, Feng YJ, Sun KN, Liu YT (2016) Boosting high-rate lithium storage of V2O5 nanowires by self-assembly on N-foped graphene nanosheets. ChemElectroChem 3(11):1730–1736

    Article  CAS  Google Scholar 

  25. Li YW, Pan GL, Xu WQ, Yao JH, Zhang LZ (2016) Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide. J Power Sources 307:114–121

    Article  CAS  Google Scholar 

  26. Li YW, Xu WQ, Xie ZP, Zhang LZ, Yao JH (2017) Structure and lithium storage performances of nickel hydroxides synthesized with different nickel salts. Ionics 23(7):1625–1636

    Article  CAS  Google Scholar 

  27. Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N (1994) Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells. J Electrochem Soc 141(11):2956–2959

    Article  CAS  Google Scholar 

  28. Yan HJ, Bai JW, Wang J, Zhang XY, Wang B, Liu Q, Liu LH (2013) Graphene homogeneously anchored with Ni(OH)2 nanoparticles as advanced supercapacitor electrodes. CrystEngComm 15(46):10007–10015

    Article  CAS  Google Scholar 

  29. Li YW, Yang QX, Yao JH, Zhang ZG, Liu CJ (2010) Effect of synthesis temperature on the phase structure and electrochemical performance of nickel hydroxide. Ionics 16(3):221–225

    Article  CAS  Google Scholar 

  30. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

    Article  CAS  Google Scholar 

  31. Wu L, Zheng J, Wang L, Xiong XH, Shao YY, Wang G, Wang JH, Zhong SK, Wu MH (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem 58(3):811–815

    Article  CAS  Google Scholar 

  32. Lee JW, Ko JM, Kim JD (2011) Hierarchical microspheres based on α-Ni(OH)2 nanosheets intercalated with different anions: synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. J Phys Chem C 115(39):19445–19454

    Article  CAS  Google Scholar 

  33. Shangguan E, Chang ZR, Tang HW, Yuan XZ, Wang H (2010) Synthesis and characterization of high-density non-spherical Ni(OH)2 cathode material for Ni–MH batteries. Int J Hydrog Energy 35(18):9716–9724

    Article  CAS  Google Scholar 

  34. Liu YH, Wang RT, Yan XB (2015) Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci Rep-Uk 5:11095

    Article  Google Scholar 

  35. Yao HQ, Hawkins SA, Sue HJ (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168

    Article  CAS  Google Scholar 

  36. Yang J, Liu W, Niu H, Cheng K, Ye K, Zhu K, Wang GL, Cao DX, Yan J (2018) Ultrahigh energy density battery-type asymmetric supercapacitors: NiMoO4 nanorod-decorated graphene and graphene/Fe2O3 quantum dots. Nano Res 11(9):4744–4758

    Article  CAS  Google Scholar 

  37. Xu CH, Xu BH, Gu Y, Xiong ZG, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6(5):1388–1414

    Article  CAS  Google Scholar 

  38. Yao JH, Li YW, Massé RC, Uchaker E, Cao GZ (2018) Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater 11:205–259

    Article  Google Scholar 

  39. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, Guibert AD (1982) Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J Power Sources 8:229–255

    Article  CAS  Google Scholar 

  40. Li YW, Yao JH, Zhu YX, Zou ZG, Wang HB (2012) Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. J Power Sources 203:177–183

    Article  CAS  Google Scholar 

  41. Li YW, Yao JH, Uchaker E, Zhang M, Tian JJ, Liu XY, Cao GZ (2013) Sn-doped V2O5 film with enhanced lithium-ion storage performance. J Phys Chem C 117(45):23507–23514

    Article  CAS  Google Scholar 

  42. Zimmerman AH, Effa PK (1984) Discharge kinetics of the nickel electrode. J Electrochem Soc 131(4):709–713

    Article  CAS  Google Scholar 

  43. Ashassi-Sorkhabi H, La’le Badakhshan P, Asghari E (2016) Electrodeposition of three dimensional-porous Ni/Ni (OH)2 hierarchical nano composite via etching the Ni/Zn/Ni (OH)2 precursor as a high performance pseudocapacitor. Chem Eng J 299:282–291

    Article  CAS  Google Scholar 

  44. Wiston BR, Ashok M (2019) Electrochemical performance of hydrothermally synthesized flower-like α-nickel hydroxide. Vacuum 160:12–17

    Article  CAS  Google Scholar 

  45. Zhang WG, Jiang WQ, Yu LM, Fu ZZ, Xia W, Yang ML (2009) Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni(OH)2 positive materials for Ni-MH batteries. Int J Hydrog Energy 34(1):473–480

    Article  Google Scholar 

  46. Li YW, Huang Y, Zheng YY, Huang RS, Yao JH (2019) Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources 416:62–71

    Article  CAS  Google Scholar 

  47. Liu CZ, Yao JH, Zou ZG, Li YW, Cao GZ (2019) Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater Today Energy 11:218–227

    Article  Google Scholar 

Download references

Funding

Financial supports were from the Guangxi Natural Science Foundation of China (2017GXNSFAA198117 and 2015GXNSFGA139006), National Natural Science Foundation of China (51664012 and 51562006), and Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20181102 and EMFM20181117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Li, Jinhuan Yao or Zhengguang Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, R., Ji, J. et al. Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries. Ionics 25, 4787–4794 (2019). https://doi.org/10.1007/s11581-019-03053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03053-x

Keywords

Navigation