Skip to main content

Advertisement

Log in

Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped graphene supported NiFe2O4 nanoparticles (NiFe2O4-NG) composite was successfully synthesized by a simple hydrothermal method. In the NiFe2O4-NG nanocomposite, the surface of nitrogen-doped graphene sheets was loaded by a large number of uniform NiFe2O4 nanoparticles with the mean size of 8 nm. Meanwhile, the nitrogen-doped graphene sheets were exfoliated. As anode materials for lithium ion batteries, the initial discharge and charging capacities of NiFe2O4-NG electrode are 1888 and 1242 mAh g−1, respectively, and the coulomb efficiency is 65.8%. Furthermore, the capacity of NiFe2O4-NG is 1100 mAh g−1 after 50 cycles. Compared with pure NiFe2O4, the superior electrochemical performance of the NiFe2O4-NG nanocomposite is mainly attributed to the unique architecture of smaller NiFe2O4 nanoparticles loaded on the high conductivity of nitrogen-doped graphene sheets, as well as the synergy effect between the nitrogen-doped graphene and nanoparticles. The high specific surface area of NiFe2O4-NG can increase the interface area between electrode and electrolyte, ensuring the full contact between electrode surface and electrolyte. The strong interaction between nitrogen-doped graphene and nanoparticle is beneficial to effectively suppress the volume expansion and the rapid ion/electron transport during the charge–discharge process. Profiting from structure and composition characteristics, the above-mentioned NiFe2O4-NG electrode delivers an excellent capacity, cycle performance and rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Yadav, C.K. Dixit, Characterization and prospective applications of nitrogen-doped graphene. J. Sci.-Adv. Mater. Dev. 2, 141–149 (2017)

    Google Scholar 

  2. S.Y. Lee, C.H. Choi, M.W. Chung, J.H. Chung, S.I. Woo, Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors. RSC Adv. 6, 55577–55583 (2016)

    Article  CAS  Google Scholar 

  3. Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008)

    Article  CAS  Google Scholar 

  4. J.C. Shearer, A. Cherevan, D. Eder, Application and future challenges of functional nanocarbon hybrids. Adv. Mater. 26, 2295–2318 (2014)

    Article  CAS  Google Scholar 

  5. X.X. Liu, E. Liu, D.L. Chao, L. Chen, S. Liu, J. Wang, Y. Li, J.P. Zhao, Y.M. Kang, Z.X. Shen, Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Adv. 6, 104010–104015 (2016)

    Article  CAS  Google Scholar 

  6. B. Xiang, W.L. An, J.J. Fu, S.X. Mei, S.G. Guo, X.M. Zhang, B. Gao, P.K. Chu, Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met. 40, 383–392 (2021)

    Article  CAS  Google Scholar 

  7. Y.K. Zhou, J.M. Lu, C.J. Deng, H.X. Zhu, G.Z. Chen, S.W. Zhang, X.H. Tian, Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries. J. Mater. Chem. A 4, 12065–12072 (2016)

    Article  CAS  Google Scholar 

  8. T.J. Wu, M.J. Jing, Y. Tian, L. Yang, J.G. Hu, X.Y. Cao, G.Q. Zou, H.S. Hou, X.B. Ji, Surface-driven energy storage behavior of dual-heteroatoms functionalized carbon material. Adv. Funct. Mater. 29, 1900941 (2019)

    Article  CAS  Google Scholar 

  9. A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kang, B.J. Paul, N.K. Singh, Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J. Power Sources 244, 435–411 (2013)

    Article  CAS  Google Scholar 

  10. M.Y. Zhu, X. Zhang, Y. Zhou, C.H. Zhuo, J.C. Huang, S.J. Li, Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Adv. 5, 39270–39277 (2015)

    Article  CAS  Google Scholar 

  11. C. Vidal-Abarca, P. Lavela, J.L. Tirado, The origin of capacity fading in NiFe2O4 conversion electrodes for lithium ion batteries unfolded by Fe-57 Mossbauer spectroscopy. J. Phys. Chem. C 114, 12828–12832 (2010)

    Article  CAS  Google Scholar 

  12. K.V. Sankar, R.K. Selvan, D. Meyrick, Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv. 5, 99959–99967 (2015)

    Article  CAS  Google Scholar 

  13. L.H. Zhang, T. Wei, Z.M. Jiang, C.Q. Liu, H. Jiang, J. Chang, L.Z. Sheng, Q.H. Zhou, L.B. Yuan, Z.J. Fan, Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. Nano Energy 48, 238–247 (2018)

    Article  CAS  Google Scholar 

  14. C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V. Chowdari, Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl. Mater. Interfaces 5, 9957–9963 (2013)

    Article  CAS  Google Scholar 

  15. H. Xia, Y.Y. Qian, Y.S. Fu, X. Wang, Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 17, 67–71 (2013)

    Article  CAS  Google Scholar 

  16. Y.J. Yao, Z.H. Yang, D.W. Zhang, W.C. Peng, H.Q. Sun, S.B. Wang, Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind. Eng. Chem. Res. 51, 6044–6051 (2012)

    Article  CAS  Google Scholar 

  17. Y.S. Fu, Y.H. Wan, H. Xia, X. Wang, Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)

    Article  CAS  Google Scholar 

  18. X.X. Liu, D.L. Chao, Y. Li, J. Hao, X.S. Liu, J.P. Zhao, J.Y. Lin, H.J. Fan, Z.X. Shen, A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy 17, 43–51 (2015)

    Article  CAS  Google Scholar 

  19. X.Y. Wang, F. Ling, D.C. Gong, J. Zh, Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 26, 1104–1111 (2016)

    Article  CAS  Google Scholar 

  20. D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nano Lett. 11, 5401–5407 (2011)

    Article  CAS  Google Scholar 

  21. M.D. Stoller, S. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  22. A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  23. Y.K. Zhou, J. Wang, Y.Y. Hu, R. O’Hayre, Z.P. Shao, A porous LiFePO4 and carbon nanotube composite. Chem. Commun. 46, 7151–7153 (2010)

    Article  CAS  Google Scholar 

  24. W.T. Song, J. Xie, S.Y. Liu, G.S. Cao, T.J. Zhu, X.B. Zhao, Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New. J. Chem. 36, 2236–2241 (2012)

    Article  CAS  Google Scholar 

  25. J. Xie, W.T. Song, G.S. Cao, T.J. Zhu, X.B. Zhao, S.C. Zhang, One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Adv. 4, 7703–7709 (2014)

    Article  CAS  Google Scholar 

  26. A.K. Rai, S.J. Kim, J. Gim, M.H. Alfaruqi, V. Mathew, J. Kim, Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries. RSC Adv. 4, 47087–47095 (2014)

    Article  CAS  Google Scholar 

  27. B. Wang, S.M. Li, B. Li, J.H. Liu, M. Yu, Facile and large-scale fabrication of hierarchical ZnFe2O4/graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New J. Chem. 39, 1725–1733 (2015)

    Article  CAS  Google Scholar 

  28. Z. Li, J.H. Cao, Z.G. Xia, J.J. Zhang, M.Q. Fan, D.H. Wei, H. Yang, Self-assembled ZnFe2O4 hollow spheres/GO hybrid anode with excellent electrochemical performance for lithium-ion batteries. J. Mater. Sci. 31, 1126–1134 (2020)

    CAS  Google Scholar 

  29. Y. Park, M. Oh, J.H. Kim, Well-dispersed ZnFe2O4 nanoparticles onto graphene as superior anode materials for lithium ion batteries. Energies 12, 304–318 (2019)

    Article  CAS  Google Scholar 

  30. X.Y. Jiao, L. Cai, X.F. Xia, W. Lei, Q.L. Hao, D. Mandler, Novel spinel nanocomposites of NixCo1−xFe2O4 nanoparticles with N-doped graphene for lithium ion batteries. Appl. Surf. Sci. 481, 200–208 (2019)

    Article  CAS  Google Scholar 

  31. C.M. Doherty, R.A. Caruso, C.J. Drummond, High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy Environ. Sci. 3, 813–823 (2010)

    Article  CAS  Google Scholar 

  32. A. Ambrosi, H.L. Poh, L. Wang, Z. Sofer, M. Pumera, Capacitance of p- and n-doped graphenes is dominated by structural defects regardless of the dopant type. Chemsuschem 7, 1102–1106 (2014)

    Article  CAS  Google Scholar 

  33. P. Ayala, R. Arenal, M.H. Rummeli, A. Rubio, T. Pichler, The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575–586 (2010)

    Article  CAS  Google Scholar 

  34. J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013)

    Article  CAS  Google Scholar 

  35. W.S.V. Lee, M. Leng, M. Li, X.L. Huang, J.M. Xue, Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy 12, 250–257 (2015)

    Article  CAS  Google Scholar 

  36. H.L. Guo, P. Su, X.F. Kang, S.K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A 1, 2248–2255 (2013)

    Article  CAS  Google Scholar 

  37. E.H. Ahlgren, J. Kotakoski, A.V. Krasheninnikov, Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, 115424–115431 (2011)

    Article  CAS  Google Scholar 

  38. Z. Jin, J. Yao, C. Kittrell, J.M. Tour, Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 5, 4112–4117 (2011)

    Article  CAS  Google Scholar 

  39. Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010)

    Article  CAS  Google Scholar 

  40. B. Wang, W.A. Abdulla, D.L. Wang, X.S. Zhao, A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ. Sci. 8, 869–875 (2015)

    Article  CAS  Google Scholar 

  41. B. Wang, B.H. Xu, T.F. Liu, P. Liu, C.F. Guo, S. Wang, Q.M. Wang, Z.G. Xiong, D.L. Wang, X.S. Zhao, Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6, 986–995 (2014)

    Article  CAS  Google Scholar 

  42. T.J. Wu, M.J. Jing, Y. Liu, X.B. Ji, Binding low crystalline MoS2 nanoflakes on nitrogen-doped carbon nanotube: towards high-rate lithium and sodium storage. J. Mater. Chem. A 7, 6439–6449 (2019)

    Article  CAS  Google Scholar 

  43. S. Yoon, C. Liao, X.G. Sun, C.A. Bridges, R.R. Unocic, J. Nanda, S. Dai, M.P. Paranthaman, Conductive surface modification of LiFePO4 with nitrogen doped carbon layers for lithium-ion batteries. J. Mater. Chem. 22, 4611–4614 (2012)

    Article  CAS  Google Scholar 

  44. X.J. Tan, C.F. Cui, S.Q. Wu, B.C. Qiu, L.Z. Wang, J.L. Zhang, Nitrogen-doped mesoporous carbon-encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chem. Asian J. 12, 36–40 (2016)

    Article  CAS  Google Scholar 

  45. J.J. Wang, X.L. Sun, Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015)

    Article  CAS  Google Scholar 

  46. L.J. Cote, F. Kim, J.X. Huang, Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009)

    Article  CAS  Google Scholar 

  47. Y.L. Guo, C.A. Di, H.T. Liu, J. Zheng, L. Zhang, G. Yu, Y.Q. Liu, General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating. ACS Nano 10, 5749–5754 (2010)

    Article  CAS  Google Scholar 

  48. P. Peng, H.T. Liu, B. Wu, Q.X. Tang, Y.Q. Liu, Nitrogen doped graphene with a p-type field-effect and its fine modulation. Acta Phys. Chim. Sin. 35, 1282–1290 (2019)

    Article  CAS  Google Scholar 

  49. X. Díez-Betriu, S. Álvarez-García, C. Botas, P. Álvarez, J. Sánchez-Marcos, C. Prieto, R. Menéndez, A. Andrés, Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C 1, 6905–6912 (2013)

    Article  CAS  Google Scholar 

  50. Y.Y. Wang, Z.W. Zhao, Y. Liu, L.R. Hou, C.Z. Yuan, Precipitant-free solvothermal construction of spindle-like CoCO3/reduced graphene oxide hybrid anode toward high-performance lithium-ion batteries. Rare Metal 39, 1082–1091 (2020)

    Article  CAS  Google Scholar 

  51. Y.K. Zhou, J.M. Lu, C.J. Deng, H.X. Zhu, G.Z. Chen, S.W. Zhang, X.H. Tian, Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO4 nanoplates as the positive electrode material of lithium-ion batteries. J. Mater. Chem. A 31, 12065–12072 (2016)

    Article  CAS  Google Scholar 

  52. S.G. Pan, X.H. Liu, CdS-Graphene nanocomposite: synthesis, adsorption kinetics and high photocatalytic performance under visible light irradiation. New J. Chem. 36, 1781–1787 (2012)

    Article  CAS  Google Scholar 

  53. W.J. Wang, Q.L. Hao, W. Lei, X.F. Xia, X. Wang, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. J. Power Sources 269, 250–259 (2014)

    Article  CAS  Google Scholar 

  54. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  55. W. Lei, W.M. Si, Q.L. Hao, Z. Han, Y.H. Zhang, M.Z. Xia, Nitrogen-doped grapheme modified electrode for nimodipine sensing. Sens. Actuators B 212, 207–213 (2015)

    Article  CAS  Google Scholar 

  56. M. Choi, S.H. Lee, Y. Jung, J. Jung, J. Park, W. Choi, S. Park, H.J. Won, J. Moon, J. Choi, S. Kim, The high capacity and cycle stability of NiFe2O4 thin film prepared by E-beam evaporation method for lithium ion batteries. J. Alloys Compd. 29, 802–806 (2017)

    Article  CAS  Google Scholar 

  57. L.Y. Wang, L.H. Zhuo, H.Y. Cheng, C. Zhang, F.Y. Zhao, Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J. Power Sources 283, 289–299 (2015)

    Article  CAS  Google Scholar 

  58. M. Fu, Z.Z. Qiu, W. Chen, Y.M. Lin, H.L. Xin, B. Yang, H.S. Fan, C.Z. Zhu, J. Xu, NiFe2O4 porous nanorods/graphene composites as high-performance anode materials for lithium-ion batteries. Electrochim. Acta 248, 292–298 (2017)

    Article  CAS  Google Scholar 

  59. Z.H. Liu, D.D. Guan, Q. Yu, L. Xu, Z.C. Zhuang, T. Zhu, D.Y. Zhao, L. Zhou, L.Q. Mai, Monodisperse and homogeneous SiOx/C microspheres: a promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Mater. 13, 112–118 (2018)

    Article  CAS  Google Scholar 

  60. H.L. Fei, Z.W. Peng, L. Li, Y. Yang, W. Lu, E.L.G. Samuel, X.J. Fan, J.M. Tour, Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 7, 502–510 (2014)

    Article  CAS  Google Scholar 

  61. J. Liang, X.Y. Yu, H. Zhou, H.B. Wu, S.J. Ding, X.W. Lou, Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem. Int. Edit. 53, 12803–12807 (2014)

    Article  CAS  Google Scholar 

  62. G.M. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, H.M. Cheng, Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214–3223 (2012)

    Article  CAS  Google Scholar 

  63. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. Mcdowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012)

    Article  CAS  Google Scholar 

  64. Y.S. Fu, C.Q. Peng, D.S. Zha, J.W. Zhu, L.L. Zhang, X. Wang, Surface pore-containing NiCo2O4 nanobelts with preferred (311) plane supported on reduced graphene oxide: a high-performance anode material for lithium-ion batteries. Electrochim. Acta 271, 137–145 (2018)

    Article  CAS  Google Scholar 

  65. Y. Li, Y. Bai, C. Wu, J. Qian, G.H. Chen, L. Liu, H. Wang, X.Z. Zhou, F. Wu, Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J. Mater. Chem. A 4, 5942–5951 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Changzhou Sci & Tech Program (Grant No. CJ20190011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shugang Pan or Xianmin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Zhao, X. Nitrogen-doped graphene supported NiFe2O4 nanoparticles as high-performance anode material for lithium-ion batteries. J Mater Sci: Mater Electron 32, 26917–26928 (2021). https://doi.org/10.1007/s10854-021-07066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07066-z

Navigation