Skip to main content
Log in

Effect of synthesis temperature on the phase structure and electrochemical performance of nickel hydroxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nickel hydroxide powder is prepared by chemical precipitation method, and the effect of synthesis temperature on the phase structure and electrochemical performances of nickel hydroxide is investigated. The phase structure is characterized by X-ray diffraction (XRD), and the electrochemical performances are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge tests. The XRD results show that low temperatures (0–20 °C) induce the precipitation of badly crystallized nickel hydroxide while at high temperatures (40–60 °C) crystallized β-nickel hydroxide is formed. Electrochemical performance tests show that the nickel hydroxide synthesized at low temperature has better electrochemical reversibility, lower electrochemical reaction impedance, and higher discharge capacity than that of the nickel hydroxide synthesized at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York

    Google Scholar 

  2. Bantignies JL, Deabate S, Righi A, Rols S, Hermet P, Sauvajol JL, Henn F (2008) J Phys Chem C 112:2193–2201

    Article  CAS  Google Scholar 

  3. Ovshinsky SR, Fetcenko MA, Ross J (1993) Science 260:176–181

    Article  CAS  Google Scholar 

  4. Palmqvist U, Eriksson L, García-García J, Simic N, Ahlberg E, Sjövall R (2001) J Power Sources 99:15–25

    Article  CAS  Google Scholar 

  5. Shukla AK, Venugopalan S, Hariprakash B (2001) J Power Sources 100:125–148

    Article  CAS  Google Scholar 

  6. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, de Guibert A (1982) J Power Source 8:229–255

    Article  CAS  Google Scholar 

  7. Kou Y, Wang HL, Zhang H, Yang XY (1999) CatalToday 51:47–57

    CAS  Google Scholar 

  8. Liu CJ, Li YW (2009) J Alloys Comp 478:415–418

    Article  CAS  Google Scholar 

  9. Bernard MC, Cortes R, Keddam M, Takenouti H, Bernard P, Senyarich S (1996) J Power Source 63:247–254

    Article  CAS  Google Scholar 

  10. Jayashree RS, Vishnu Kamath P, Subbanna GN (2000) J Electrochem Soc 147:2029–2032

    Article  CAS  Google Scholar 

  11. Ramesh TN, Vishnu Kamath P, Shivakumara C (2005) J Electrochem Soc 152:A806–A810

    Article  CAS  Google Scholar 

  12. Yang D, Wang R, He M, Zhang J, Liu ZF (2005) J Phys Chem B 109:7654–7658

    Article  CAS  Google Scholar 

  13. Song Q, Tang Z, Guo H, Chan SLI (2002) J Power Sources 112:428–434

    Article  CAS  Google Scholar 

  14. Freitas MBJG, Silva RK Silva e, Anjos DM, Rozario A, Manoel PG (2007) J Power Sources 165:916–921

    Article  CAS  Google Scholar 

  15. Zhou H, Zhou Z (2005) Solid State Ionics 176:1909–1914

    Article  CAS  Google Scholar 

  16. Tessier C, Haumesser PH, Bernard P, Delmas C (1999) J Electrochem Soc 146:2059–2067

    Article  CAS  Google Scholar 

  17. Deabate S, Fourgeot F, Henn F (2000) J Power Sources 87:125–136

    Article  CAS  Google Scholar 

  18. Rajamathi M, Vishnu Kamath P, Seshadri R (2000) J Mater Chem 10:503–506

    Article  CAS  Google Scholar 

  19. Rajamathi M, Subbanna GN, Vishnu Kamath P (1997) J Mater Chem 7:2293–2296

    Article  CAS  Google Scholar 

  20. Ostwald W (1897) Z Phys Chem 22:289–330

    CAS  Google Scholar 

  21. Ramesh TN (2008) Vishnu Kamath P. Bull Mater Sci 31:169–172

    Article  CAS  Google Scholar 

  22. Vishnu Kamath P, Ahmed MF (1993) J Appl Electrochem 23:225–230

    Article  Google Scholar 

  23. Mancier V, Metrot A, Willmann P (1996) Electrochim Acta 41:1259–1265

    Article  CAS  Google Scholar 

  24. Liu B, Yuan H, Zhang Y (2004) Int J Hydrogen Energy 29:453–458

    Article  CAS  Google Scholar 

  25. Ramesh TN, Vishnu Kamath P (2009) J Solid State Electrochem 13:763–771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Guangxi Natural Science Foundation (No. 0991247), Guangxi Science Research and Technology Developing Foundation of China (No. 0842003-15/16), and China Postdoctoral Science Foundation (No. 20090450188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, Q., Yao, J. et al. Effect of synthesis temperature on the phase structure and electrochemical performance of nickel hydroxide. Ionics 16, 221–225 (2010). https://doi.org/10.1007/s11581-009-0397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0397-2

Keywords

Navigation