Skip to main content

Advertisement

Log in

Effectively enhance high voltage stability of LiNi1/3Co1/3Mn1/3O2 cathode material with excellent energy density via La2O3 surface modified

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

La2O3-coated LiNi1/3Mn1/3Co1/3O2 has been successfully synthesized via a wet chemical process followed. The 3 wt% La2O3-coated LiNi1/3Mn1/3Co1/3O2 illustrated highest rate capability, lowest voltage decay, outstanding cycling performance, and excellent energy density at the range of 2.5–4.5 V. The discharge capacity of LiNi1/3Mn1/3Co1/3O2 at a 5C rate increases from 86.9 to 137.5 mA h g−1 upon coating with La2O3 particles. The decrements of the average discharge voltages for 3 wt% La2O3-coated LiNi1/3Mn1/3Co1/3O2 electrode is 10.3 mV over 100th cycle and 26.9 mV over 200th cycle compared to 407 mV over 100th cycle for bare nickel cobalt manganese. The energy densities retention of 3 wt% La2O3-coated LiNi1/3Mn1/3Co1/3O2 is 96.5% after 100 cycles and 89.7% after 200 cycles compared to 34.5% after 100 cycles for bare LiNi1/3Mn1/3Co1/3O2. Universal but efficient, it can also be suitable to coat other layered cathode materials to ameliorate their electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  2. Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12:1221–1250

    Article  CAS  Google Scholar 

  3. Yin X, Sun G, Wang L, Bai L, Su L, Wang Y, Du Q, Shao G (2017) 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int J Hydrog Energy 42:25267–25276

    Article  CAS  Google Scholar 

  4. Yang W, Yang W, Song A, Gao L, Sun G, Shao G (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182

    Article  CAS  Google Scholar 

  5. Seh ZW, Sun Y, Zhang Q, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  PubMed  Google Scholar 

  6. Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2018) Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J Alloys Compd 749:900–908. https://doi.org/10.1016/j.jallcom.2018.03.353

    Article  CAS  Google Scholar 

  7. Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ ultrathin δ-MnO2 nanosheets core-shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8:9050–9058

    Article  CAS  PubMed  Google Scholar 

  8. Song A, Cao L, Yang W, Li Y, Qin X, Shao G (2018) Uniform multilayer graphene-coated Iron and Iron-carbide as oxygen reduction catalyst. ACS Sustain Chem Eng 6:4890–4898. https://doi.org/10.1021/acssuschemeng.7b04319

    Article  CAS  Google Scholar 

  9. Du Q, Su L, Hou L, Sun G, Feng M, Yin X, Ma Z, Shao G, Gao W (2018) Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J Alloys Compd 740:1051–1059

    Article  CAS  Google Scholar 

  10. Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 10:816–824

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Li Y, Sun X (2013) Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy 2:443–467

    Article  CAS  Google Scholar 

  12. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  13. Yu FD, Que LF, Wang ZB, Xue Y, Zhang Y, Liu BS, Gu DM (2017) Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material. J Mater Chem A 5:9365–9376

    Article  CAS  Google Scholar 

  14. Chen Z, Ma Z, Song J, Wang L, Shao G (2016) Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. J Power Sources 324:86–96

    Article  CAS  Google Scholar 

  15. Song J, Xing R, Jiao T, Peng Q, Yuan C, Möhwald H, Yan X (2018) Crystalline dipeptide nanobelts based on solid–solid phase transformation self-assembly and their polarization imaging of cells. ACS Appl Mater Interfaces 10:2368–2376

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Wang L, Song A, Xia M, Li Z, Shao G (2018) The study on the active origin of electrocatalytic water splitting using Ni-MoS2 as example. Electrochim Acta 268:268–275

    Article  CAS  Google Scholar 

  17. Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567

    Article  CAS  Google Scholar 

  18. Zhang Q, Li Y, Phanlavong P, Wang Z, Jiao T, Qiu H, Peng Q (2017) Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: behavior and mechanism. J Clean Prod 161:317–326

    Article  CAS  Google Scholar 

  19. Kwabi DG, Ortiz-Vitoriano N, Freunberger SA, Chen Y, Imanishi N, Bruce PG, Shao-Horn Y (2014) Materials challenges in rechargeable lithium-air batteries. MRS Bull 39:443–452

    Article  CAS  Google Scholar 

  20. Manthiram A, Song B, Li W (2017) A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials 6:125–139

  21. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51:9994–10024

    Article  CAS  Google Scholar 

  22. Li Y, Wu C, Bai Y, Liu L, Wang H, Wu F, Zhang N, Zou Y (2016) Hierarchical mesoporous lithium-rich Li[Li0.2Ni0.2Mn0.6]O2 cathode material synthesized via ice templating for lithium-ion battery. ACS Appl Mater Interfaces 8:18832

    Article  CAS  PubMed  Google Scholar 

  23. Sun G, Yin X, Yang W, Zhang J, Du Q, Ma Z, Shao G, Wang Z-B (2018) Synergistic effects of ion doping and surface-modifying for lithium transition-metal oxide: synthesis and characterization of La2O3-modified LiNi1/3Co1/3Mn1/3O2. Electrochim Acta 272:11–21

    Article  CAS  Google Scholar 

  24. Li Y, Liu J, Lei Y, Lai C, Xu Q (2017) Enhanced electrochemical performances of Na-doped cathode material LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. J Mater Sci 52:13596–13605

    Article  CAS  Google Scholar 

  25. Li JB, Xu YL, Xiong LL, Wang JP (2011) Improvement of LiNi1/3Co1/3Mn1/3O2 cathode materials by nano-MgO doping. Acta Phys -Chim Sin 27(2597):2593–2599

    CAS  Google Scholar 

  26. Zhang Y, Wang Z-B, Yu F-D, Que L-F, Wang M-J, Xia Y-F, Xue Y, Wu J (2017) Studies on stability and capacity for long-life cycle performance of Li(Ni0.5Co0.2Mn0.3)O2 by Mo modification for lithium-ion battery. J Power Sources 358:1–12

    Article  CAS  Google Scholar 

  27. Li G, Huang Z, Zuo Z, Zhang Z, Zhou H (2015) Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi 1/3 co 1/3 Mn 1/3 O 2 cathode. J Power Sources 281:69–76

    Article  CAS  Google Scholar 

  28. Hu Z, Deng Z, Wei Q, Zhao T, Wang Y, Yu Z, Ma L, Zhou K (2017) Roles of Al-doped ZnO (AZO) modification layer on improving electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 thin film cathode. Ionics 1–12

  29. Zhang H L, Liu S (2013) Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2?xClx as cathode materials for Lithium ion batteries at 55°C. Adv Mater Sci Eng (2013-12-23) 2013: in press

  30. Kim C, Yang SB, Yoo GW, Son JT (2016) F-doped 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 high porous nanofibers as cathode material for lithium-ion battery. J Nanosci Nanotechnol 16:8342–8346

    Article  CAS  Google Scholar 

  31. Wang C, Chen L, Zhang H, Yang Y, Wang F (2014) Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. Electrochim Acta 119:236–242

    Article  CAS  Google Scholar 

  32. Guo X, Cong LN, Zhao Q, Tai LH, Wu XL, Zhang JP, Wang RS, Xie HM, Sun LQ (2015) Enhancement of electrochemical performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 by surface modification with MnO 2. J Alloys Compd 651:12–18

    Article  CAS  Google Scholar 

  33. Zhang Q, Wang L, Zhu C, Sun Z, Cheng W, Lv D, Ren W, Bian L, Xu J, Chang A (2017) Enhanced electrochemical capability of LiNi1/3Co1/3Mn1/3O2 cathode materials coated with fluoroborate glass for lithium-lon batteries. Chemelectrochem 4:1199–1204

    Article  CAS  Google Scholar 

  34. Aykol M, Kirklin S, Wolverton C (2015) Thermodynamic aspects of cathode coatings for Lithium-ion batteries. Adv Energy Mater 4

  35. Aykol M, Kim S, Hegde VI, Snydacker D, Lu Z, Hao S, Kirklin S, Morgan D, Wolverton C (2016) High-throughput computational design of cathode coatings for li-ion batteries. Nat Commun 7:13779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du K, Xie H, Hu G, Peng Z, Cao Y, Yu F (2016) Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying-coating nano-Al2O3. ACS Appl Mater Interfaces 8: 17713, 17720

  37. Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H, Zhang X (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3 )O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195:8267–8274

    Article  CAS  Google Scholar 

  38. Wang B, Abdulla WA, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875

    Article  CAS  Google Scholar 

  39. Yi TF, Mei J, Zhu YR (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105

    Article  CAS  Google Scholar 

  40. Yi T-F, Li Y-M, Yang S-Y, Zhu Y-R, Xie Y (2016) Improved cycling stability and fast charge-discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl Mater Interfaces 8:32349–32359

    Article  CAS  PubMed  Google Scholar 

  41. Ren D, Shen Y, Yang Y, Shen L, Levin B, Yu Y, Muller D A, Abruña H D (2017) Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces

  42. Zhang X, Jiang WJ, Mauger A, Qilu GF, Julien CM (2011) Minimization of the cation mixing in Li 1+x (NMC) 1−xO2 as cathode material. J Power Sources 195:1292–1301

    Article  CAS  Google Scholar 

  43. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522

    Article  CAS  PubMed  Google Scholar 

  44. Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54:4440–4457

    Article  CAS  Google Scholar 

  45. Yin K, Fang W, Zhong B, Guo X, Tang Y, Nie X (2012) The effects of precipitant agent on structure and performance of LiNi 1/3 co 1/3 Mn 1/3 O 2 cathode material via a carbonate co-precipitation method. Electrochim Acta 85:99–103

    Article  CAS  Google Scholar 

  46. Yao L, Yao H, Xi G, Feng Y (2016) Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D,L-malic acid. RSC Adv 6:1833–1840

    Google Scholar 

  47. Bian X, Fu Q, Pang Q, Gao Y, Wei Y, Zou B, Du F, Chen G (2016) Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties. ACS Appl Mater Interfaces 8:3308–3318

    Article  CAS  PubMed  Google Scholar 

  48. Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl Mater Interfaces 6:10330

    Article  CAS  PubMed  Google Scholar 

  49. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D (2016) Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for li-ion batteries. Adv Energy Mater 6:1502398

    Article  CAS  Google Scholar 

  50. Sun G, Yin X, Yang W, Song A, Jia C, Yang W, Du Q, Ma Z, Shao G (2017) The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides. Phys Chem Chem Phys 19:29886–29894

    Article  CAS  PubMed  Google Scholar 

  51. He M, Su CC, Peebles C, Feng Z, Connell JG, Liao C, Wang Y, Shkrob IA, Zhang Z (2016) Mechanistic insight in the function of phosphite additives for protection of LiNi0.5Co0.2Mn0.3O2 cathode in high voltage li-ion cells. ACS Appl Mater Interfaces 8:11450–11458

    Article  CAS  PubMed  Google Scholar 

  52. He R, Zhang L, Yan M, Gao Y, Liu Z (2016) Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries. J Mater Sci 52:1–9

    Article  Google Scholar 

  53. Yang C, Zhang X, Huang J, Ao P, Zhang G (2016) Enhanced rate capability and cycling stability of Li 1.2-x Na x Mn 0.54 co 0.13 Ni 0.13 O 2. Electrochim Acta 196:261–269

    Article  CAS  Google Scholar 

  54. Wang L, Zhao J, He X, Gao J, Li J, Wan C, Jiang C (2012) Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int J Electrochem Sci 7:345–353

    CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the National Natural Science Foundation of China (nos. 51674221 and 51704261) and the Natural Science Foundation of Hebei Province (B2018203330 and B2018203360).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangjie Shao or Xiujuan Qin.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Jia, C., Zhang, J. et al. Effectively enhance high voltage stability of LiNi1/3Co1/3Mn1/3O2 cathode material with excellent energy density via La2O3 surface modified. Ionics 25, 2007–2016 (2019). https://doi.org/10.1007/s11581-018-2621-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2621-4

Keywords

Navigation