Skip to main content
Log in

Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-x Co x O3-δ dense diffusion barrier

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A conventional solid-state reaction was used to synthesize La0.8Sr0.2(Ga0.8Mg0.2) x Co1-x O3-δ (LSGMC, x = 0.1, 0.3, 0.5, 0.7, and 0.9) and La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), of which the structure, conductivity, and thermal expansion behavior were investigated by XRD, four-terminal method, and dilatometry. A limiting current oxygen sensor was prepared with LSGM solid electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)0.1Co0.9O3-δ (LSGMC9) dense diffusion barrier. The effects of temperature, oxygen concentration, and thickness of dense diffusion barrier (L) on sensing properties were investigated. XRD results show that cubic and monoclinic phases are identified for LSGM and LSGMC, respectively. Electrical conductivity increases with x. A change of electrical conductivity from semiconductive to metallic conduction is observed for x = 0.5–0.9 with the temperature rise. Thermal expansion coefficients (TECs) increase to a maximum firstly and then decrease with increasing x at temperature from 300 to 1000 °C. I-V curves of oxygen sensor display a good limiting current plateau. The relationship between limiting current and oxygen concentration is linear. The limiting current decreases with increasing L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu T, Zhang XF, Yuan L, Yu JK (2015) A review of high-temperature electrochemical sensors based on stabilized zirconia. Solid State Ionics 283:91–102

    Article  CAS  Google Scholar 

  2. Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38:4271–4282

    Article  CAS  Google Scholar 

  3. Ivers-Tiffée E, Härdtl KH, Menesklou W, Riegel J (2001) Principles of solid state oxygen sensors for lean combustion gas control. Electrochim Acta 47:807–814

    Article  Google Scholar 

  4. Garzon F, Raistrick I, Brosha E, Houlton R, Chung BW (1998) Dense diffusion barrier limiting current oxygen sensors. Sens Actuator B-Chem 50:125–130

    Article  CAS  Google Scholar 

  5. Peng ZY, Liu ML, Balko E (2001) A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane. Sens Actuator B-Chem 72:35–40

    Article  CAS  Google Scholar 

  6. He BG, Liu T, Guan JZ, Cheng C (2012) Preparation and property of limiting current oxygen sensor with Sr0.9Y0.1CoO3−δ dense diffusion barrier. J Chin Ceram Soc 42:268–274

    Google Scholar 

  7. Dietz H (1982) Gas diffusion controlled solid electrolyte oxygen sensors. Solid State Ionics 6:175–183

    Article  CAS  Google Scholar 

  8. Takeuchi T (1988) Oxygen sensor. Sensors Actuators 14:109–124

    Article  CAS  Google Scholar 

  9. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803

    Article  CAS  Google Scholar 

  10. Feng M, Goodenough JB (1994) A superior oxide-ion electrolyte. Eur J Solid State Inorg Chem 31:663–672

    CAS  Google Scholar 

  11. Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New York

    Book  Google Scholar 

  12. Inaba T, Saji K (2008) Low temperature operation of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes. Sens Actuator B-Chem 129:874–880

    Article  CAS  Google Scholar 

  13. Trofimenko N, Ullmann H (1999) Transition metal doped lanthanum gallates. Solid State Ionics 118:215–227

    Article  CAS  Google Scholar 

  14. Chen FL, Liu ML (1998) Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells. J Solid State Electrochem 3:7–14

    Article  CAS  Google Scholar 

  15. Van der Pauw LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  16. Esquirol A, Brandon NP, Kilner JA, Mogensen M (2004) Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. J Electrochem Soc 151:A1847–A1855

    Article  CAS  Google Scholar 

  17. Gao X, Liu T, Yu JK, Li L (2017) Limiting current oxygen sensor based on La0.8Sr0.2Ga0.8Mg0.2O3−δ as both dense diffusion barrier and solid electrolyte. Ceram Int 43:6329–6332

    Article  CAS  Google Scholar 

  18. Yi JY, Choi GM (2002) Phase characterization and electrical conductivity of LaSr(GaMg)1−x Mn x O3 system. Solid State Ionics 148:557–565

    Article  CAS  Google Scholar 

  19. Kharton VV, Viskup AP, Yaremchenko AA, Baker RT, Gharbage GC, Mather GC, Figueiredo FM, Naumovich EN, Marques FMB (2000) Ionic conductivity of La(Sr)Ga(Mg, M)O3−δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants. Solid State Ionics 132:119–130

    Article  CAS  Google Scholar 

  20. Trofimenko N, Ullmann H (1999) Co-doped LSGM: composition-structure-conductivity relations. Solid State Ionics 124:263–270

    Article  CAS  Google Scholar 

  21. Politova ED, Aleksandrovskii VV, Kaleva GM, Mosunov AV, Suvorkin SV, Zaitsev SV, Sung JS, Choo KY, Kim TH (2006) Mixed conducting perovskite-like ceramics on the base of lanthanum gallate. Solid State Ionics 177:1779–1783

    Article  CAS  Google Scholar 

  22. Politova ED, Stefanovich SY, Avetisov AK, Aleksandrovskii VV, Glavatskih TY, Golubko NV, Kaleva GM, Mosunov AS, Venskovskii NU (2004) Processing, structure, microstructure, and transport properties of the oxygen-conducting ceramics (La, Sr)(Ga, M)O y (M=Mg, Fe, Ni). J Solid State Electrochem 8:655–660

    Article  CAS  Google Scholar 

  23. Chen CH, Kruidhof H, Bouwmeester HJM, Burgraaf AJ (1997) Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique. J Appl Electrochem 27:71–75

  24. Kharton VV, Viskup AP, Naumovich EN, Lapchuk NM (1997) Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni) I oxygen transport in perovskites LaCoO3-LaGaO3. Solid State Ionics 104:67–78

    Article  CAS  Google Scholar 

  25. Senaris-Rodriguez MA, Goodenough JB (1995) LaCoO3 revisited. J Sol State Chem 116:224–231

    Article  CAS  Google Scholar 

  26. Zhang XF, Liu T, Yu JK, Gao X, Jin HB, Wang XN, Wang C (2017) A limiting current oxygen sensor with La0.8Sr0.2(Ga0.8Mg0.2)1-x Fe x O3-δ dense diffusion barrier. J Solid State Electrochem 21:1323–1328

  27. Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16

    Article  Google Scholar 

  28. Luo ZA (2006) Research on electrode performance of zirconia oxygen sensors. University of Science and Technology, Wuhan

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51374055 and 51274059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, T., Zhang, H. et al. Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-x Co x O3-δ dense diffusion barrier. Ionics 24, 827–832 (2018). https://doi.org/10.1007/s11581-017-2245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2245-0

Keywords

Navigation