Skip to main content

Advertisement

Log in

Evaluation of LiMn2O4-LiNi0.80Co0.15Al0.05O2 hybrid material as cathode in soft-packed lithium ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The major electrochemical performances of LiMn2O4 (LMO)-LiNi0.80Co0.15Al0.05O2 (NCA) blending cathodes with full-range ratios are evaluated in industrial perspective. The results indicate that the reversible lithium ions can be fully utilized when NCA percentage reaches up to 50 %. The median voltages of blends are higher than the value calculated from a linear relationship of the two pristine cathodes, which is beneficial to energy density. But a synergy effect on room-temperature cycle performance is not observed for the hybrid cathode. However, the high-temperature (45 °C) capacity retention with 70 % NCA is 97.9 % after 100 cycles, higher than both pristine cathodes. It is not until NCA content increases to more than 50 % that the high-rate performance is much deteriorated. Additionally, the swelling of fully charged pouch-type battery after 4 h storage at 85 °C disappears when NCA percentage is less than 50 %. Hence, it is practically manifested that critical flaws of NCA and LMO can be compromised by blending with each other in a critical ratio. In this way, NCA can be practically used in soft-packed battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Numata T, Amemiya C, Kumeuchi T, Shirakata M, Yonezawa M (2001) Advantages of blending LiNi0.8Co0.2O2 into Li1+xMn2-xO4 cathodes. J Power Sources 97-98:358–360

    Article  CAS  Google Scholar 

  2. Ma ZF, Yang XQ, Liao XZ, Sun X, McBreen J (2001) Electrochemical evaluation of composite cathodes base on blends of LiMn2O4 and LiNi0.8Co0.2O2. Electrochem Commun 3:425–428

    Article  CAS  Google Scholar 

  3. Myung ST, Cho MH, Hong HT, Kang TH, Kim CS (2005) Electrochemical evaluation of mixed oxide electrode for Li-ion secondary batteries: Li1.1Mn1.9O4 and LiNi0.8Co0.15Al0.05O2. J Power Sources 146:222–225

    Article  CAS  Google Scholar 

  4. Manthiram A, Choi W (2007) Suppression of Mn dissolution in spinel cathodes by trapping the protons within layered oxide cathodes. Electrochem Solid-State Lett 10:A228–A231

    Article  CAS  Google Scholar 

  5. Nam KW, Yoon WS, Shin H, Chung KY, Choi S, Yang XQ (2009) In situ X-ray diffraction studies of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge-discharge cycling. J Power Sources 192:652–659

    Article  CAS  Google Scholar 

  6. Gao J, Manthiram A (2009) Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources 191:644–647

    Article  CAS  Google Scholar 

  7. Wu N, Wu H, Yuan W, Liu S, Liao J, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3:13648–13652

    Article  CAS  Google Scholar 

  8. Kleiner K, Dixon D, Jakes P, Melke J, Yavuz M, Roth C, Nikolowski K, Liebau V, Ehrenberg H (2015) Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries. J Power Sources 273:70–82

    Article  CAS  Google Scholar 

  9. Majumder SB, Nieto S, Katiyar RS (2006) Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries. J Power Sources 154:262–267

    Article  CAS  Google Scholar 

  10. Belharouak I, Vissers D, Amine K (2006) Thermal stability of the Li(Ni0.8Co0.15Al0.05)O2 cathode in the presence of cell components. J Electrochem Soc 153:A2030–A2035

    Article  CAS  Google Scholar 

  11. Murakami M, Shimoda K, Ukyo Y, Arai H, Uchimoto Y, Ogumi Z (2015) 7Li NMR study on irreversible capacity of LiNi0.8-xCo0.15Al0.05MgxO2 electrode in a lithium-ion battery. J Electrochem Soc 162:A1315–A1318

    Article  CAS  Google Scholar 

  12. Kim H, Lee K, Kim S, Kim Y (2016) Fluorination of free lithium residues on the surface of lithium nickel cobalt aluminum oxide cathode materials for lithium ion batteries. Mater Des 100:175–179

    CAS  Google Scholar 

  13. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  14. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett 9:1045–1051

    Article  CAS  Google Scholar 

  15. Guan D, Jeevarajan JA, Wang Y (2011) Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 3:1465–1469

    Article  CAS  Google Scholar 

  16. Tran HY, Täubert C, Fleischhammer M, Axmann P, Küppers L, Wohlfahrt-Mehrens M (2011) LiMn2O4 spinel/LiNi0.8Co0.15Al0.05O2 blends as cathode materials for lithium-ion batteries. J Electrochem Soc 158:A556–A561

    Article  CAS  Google Scholar 

  17. Jiang Q, Liu D, Zhang H, Wang S (2015) Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium-ion batteries. J Phys Chem C 119:28776–28782

    Article  CAS  Google Scholar 

  18. Han CG, Zhu C, Saito G, Akiyama T (2016) Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochem Acta 209:225–234

    Article  CAS  Google Scholar 

  19. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

  20. Lee SH, Yoon CS, Amine K, Sun YK (2013) Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J Power Sources 234:201–207

    Article  CAS  Google Scholar 

  21. Reddy MV, Silvister Raju MJ, Sharma N, Quan PY, Nowshad SH, Emmanuel HEC, Peterson VK, Chowdari BVR (2011) Preparation of Li1.03Mn1.97O4 and Li1.06Mn1.94O4 by the polymer precursor method and X-ray, neutron diffraction and electrochemical studies. J Electrochem Soc 158:A1231–A1236

    Article  CAS  Google Scholar 

  22. Robert R, Bünzli C, Berg EJ, Novák P (2015) Activation mechanism of LiNi0.8Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses. Chem Mater 27:526–536

    Article  CAS  Google Scholar 

  23. Deng Z, Yang L, Cai Y, Deng H, Sun L (2016) Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium ion phosphate battery. Energy 112:469–480

    Article  CAS  Google Scholar 

  24. Smekens J, Gopalakrishnan R, Steen NV, Omar N, Hegazy O, Hubin A, Mierlo JV (2016) Influence of electrode density on the performance of Li-ion batteries: experimental and simulation results. Energies 9:104–116

    Article  Google Scholar 

  25. Bian F, Zhang Z, Yang Y (2014) Enhanced high temperature cycling performance of LiMn2O4/graphite cells with methylene methane disulfonate (MMDS) as electrolyte additive and its acting mechanism. J Energy Chem 23:383–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Wu, C., Zhang, Z. et al. Evaluation of LiMn2O4-LiNi0.80Co0.15Al0.05O2 hybrid material as cathode in soft-packed lithium ion battery. Ionics 23, 567–574 (2017). https://doi.org/10.1007/s11581-016-1850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1850-7

Keywords

Navigation