Skip to main content
Log in

Characterization of the carbon-coated LiNi1−y Co y PO4 solid solution synthesized by a non-aqueous sol-gel route

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanosize carbon-coated samples of the solid solution LiNi1−y Co y PO4 were prepared and investigated with respect to high-voltage cathode materials (4–5 V) for Li-ion batteries. For the syntheses, a modified non-aqueous sol-gel approach under argon atmosphere was applied. Crystal structure and morphology of the products were analyzed by X-ray powder diffraction, scanning electron microscopy, and Raman spectroscopy. Phase pure samples crystallize in the olivine-type structure with a linear relation between lattice parameters and chemical composition. The mean crystal size of the particles is smaller than 300 nm with increasing agglomeration towards samples with higher nickel content. Effects of the Ni/Co ratio on P-O and M-O bonds were explored by FTIR and UV/VIS measurements, too. Substitution of Ni by Co causes larger cell volumes, longer atomic distances, and weaker P-O and M-O bonds. Additional studies focus on the mechanism of formation of LiNiPO4 and the conditions for the formation of the phosphide by-products Ni3P and Ni12P5 by carbothermal reduction. The electrochemical properties of all compounds were investigated by galvanostatic charge/discharge measurements and differential capacity analysis. The small particles of the sol-gel process lead to a superior capacity in comparison to a common solid-state synthesis. Cyclability of the whole solid-solution is evaluated for the first time. For a Ni content of 33 %, the voltage is shifted to a higher level and a positive effect on capacity retention is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Fuchs JN (1834) J Prakt Chem 3:98–104

    Article  Google Scholar 

  3. Zaghib K, Mauger A, Groult H, Goodenough JB, Julien CM (2013) Materials 6:1028–1049

    Article  CAS  Google Scholar 

  4. Sun C, Rajasekhara S, Goodenough JB, Zhou F (2011) J Am Chem Soc 133:2132–2135

    Article  CAS  Google Scholar 

  5. Julien CM, Mauger A (2013) Ionics 19:951–988

    Article  CAS  Google Scholar 

  6. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Electrochem 8:558–564

    Article  CAS  Google Scholar 

  7. Rommel SM, Schall N, Brünig C, Weihrich R (2014) Monatsh Chem 145:385–404

    Article  CAS  Google Scholar 

  8. Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Ionics 8:17–26

    Article  CAS  Google Scholar 

  9. Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Ionics 18:625–633

    Article  CAS  Google Scholar 

  10. Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) J Solid State Electrochem 16:3791–3798

    Article  CAS  Google Scholar 

  11. Ellis B, Herle SP, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Discuss 134:119–141

    Article  CAS  Google Scholar 

  12. Wang D, Xiao J, Xu W, Zhang JG (2010) The 15th International Meeting on Lithium Batteries Abstract #372

  13. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Mater Sci Eng B 98:185–189

    Article  Google Scholar 

  14. Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Gallardo JM, Sanján ML, Amador U (2001) Chem Mater 13:1570–1576

    Article  CAS  Google Scholar 

  15. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) J Power Sources 97:430–432

    Article  Google Scholar 

  16. Wolfenstine J, Allen J (2005) J Power Sources 142:389–390

    Article  CAS  Google Scholar 

  17. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid-State Lett 9:A352–A355

    Article  CAS  Google Scholar 

  18. Kandhasamy S, Pandey A, Minakshi M (2012) Electrochim Acta 60:170–176

    Article  CAS  Google Scholar 

  19. Herle SP, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147–152

    Article  CAS  Google Scholar 

  20. Fisher CAJ, Prieto VMH, Islam MS (2008) Chem Mater 20:5907–5915

    Article  CAS  Google Scholar 

  21. Minakshi M, Singh P, Appadoo D, Martin DE (2011) Electrochim Acta 56:4356–4360

    Article  CAS  Google Scholar 

  22. Bramnik NN, Trots DM, Hofmann HJ, Ehrenberg H (2009) Phys Chem Chem Phys 11:3271–3277

    Article  CAS  Google Scholar 

  23. Minakshi M, Singh P, Ralph D, Appadoo D, Blackford M, Ionescu M (2012) Ionics 18:583–590

    Article  CAS  Google Scholar 

  24. Wolfenstine J, Allen J (2004) J Power Sources 136:150–153

    Article  CAS  Google Scholar 

  25. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915

    Article  CAS  Google Scholar 

  26. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid-State Lett 3:178–179

    Article  CAS  Google Scholar 

  27. Shanmukaraj D, Murugan R (2004) Ionics 10:88–92

    Article  CAS  Google Scholar 

  28. Dimesso L, Spanheimer C, Jaegermann W (2013) Mater Res Bull 48:559–565

    Article  CAS  Google Scholar 

  29. Muraliganth T, Manthiram A (2010) J Phys Chem C 114:15330–15540

    Article  Google Scholar 

  30. Bhuvaneswari D, Gangulibabu, Doh C, Kalaiselvi N (2011) Int J Electrochem Sci 6:3714–3728

    CAS  Google Scholar 

  31. Wang W, Yang Y, Liang Y, Cui L, Casalongue HS, Li Y, Hong G, Cui Y, Dai H (2011) Angew Chem 50:7364–7368

    Article  CAS  Google Scholar 

  32. Qing R, Yang MC, Meng S, Sigmund W (2013) Electrochim Acta 108:827–832

    Article  CAS  Google Scholar 

  33. Yang J, Xu JJ (2006) J Electrochem Soc 153:A716–A723

    Article  CAS  Google Scholar 

  34. Scherrer P (1918) Göttinger Nachrichten Gesell 2:98–100

    Google Scholar 

  35. Abrahams I (1985) Acta Cryst C41:1–4

    Google Scholar 

  36. Petricek V, Dusek M, Palatinus L, Jana (2006) The crystallographic computing system. Institute of Physics, Praha

    Google Scholar 

  37. Vegard L (1921) Z Physi A 1:17–26

    Article  Google Scholar 

  38. Shannon RD (1976) Acta Cryst A 32:751–767

    Article  Google Scholar 

  39. Lee IK, Kim CM, Kim SJ, Kim CS (2012) J Appl Phys 111:07D7221–07D7223

    Google Scholar 

  40. Molenda J, Kulka A, Milewska A, Zając W, Świerczek K (2013) Materials 6:1656–1687

    Article  CAS  Google Scholar 

  41. Goni A, Lezama L, Arriortua MI, Barberisa GE, Rojo T (2000) J Mater Chem 10:423–428

    Article  CAS  Google Scholar 

  42. Paques-Ledent MT, Tarte P (1973) Spectrochim Acta A: Mol Spectrosc 29:1007–1016

    Article  CAS  Google Scholar 

  43. Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N (2011) Electrochem Commun 13:800–802

    Article  CAS  Google Scholar 

  44. Yang SMG, Aravindan V, Cho WI, Chang DR, Kim HS, Lee YS (2012) J Electrochem Soc 159:A1013–A1018

    Article  CAS  Google Scholar 

  45. Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2012) Electrochem Commun 15:22–25

    Article  CAS  Google Scholar 

  46. Penazzi N, Arrabito M, Piana M, Bodoardo S, Panero S, Amadei I (2004) J Eur Ceram Soc 24:1381–1384

    Article  CAS  Google Scholar 

  47. Sharabi R, Markevich E, Fridman K, Gershinsky G, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2013) Electrochem Commun 28:20–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Holger Kunz and Jasmin Dollinger for cycling tests. Prof. Dr. Alkwin Slenczka and Ulrike Schießl are acknowledged for Raman and SEM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Weihrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rommel, S.M., Rothballer, J., Schall, N. et al. Characterization of the carbon-coated LiNi1−y Co y PO4 solid solution synthesized by a non-aqueous sol-gel route. Ionics 21, 325–333 (2015). https://doi.org/10.1007/s11581-014-1191-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1191-3

Keywords

Navigation