Skip to main content
Log in

Hybrid Model of Bacterial Biofilm Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Bacterial biofilms play a critical role in environmental processes, water treatment, human health, and food processing. They exhibit highly complex dynamics due to the interactions between the bacteria and the extracellular polymeric substance (EPS), water, and nutrients and minerals that make up the biofilm. We present a hybrid computational model in which the dynamics of discrete bacterial cells are simulated within a multiphase continuum, consisting of EPS and water as separate interacting phases, through which nutrients and minerals diffuse. Bacterial cells in our model consume water and nutrients in order to grow, divide, and produce EPS. Consequently, EPS flows outward from the bacterial colony, while water flows inward. The model predicts bacterial colony formation as a treelike structure. The distribution of bacterial growth and EPS production is found to be sensitive to the pore spacing between bacteria and the consumption of nutrients within the bacterial colony. Forces that are sometimes neglected in biofilm simulations, such as lubrication force between nearby bacterial cells and osmotic (swelling) pressure force resulting from gradients in EPS concentration, are observed to have an important effect on biofilm growth via their influence on bacteria pore spacing and associated water/nutrient percolation into the bacterial colony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alpkvist E, Klapper I (2007a) Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci Technol 55(8–9):265–273

    Google Scholar 

  • Alpkvist E, Klapper I (2007b) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789

    MATH  Google Scholar 

  • Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol Bioeng 94(5):961–979

    Google Scholar 

  • Bott TR, Pinheiro M (1977) Biological fouling velocity and temperature effects. Can J Chem Eng 55(4):473–474

    Google Scholar 

  • Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing biofilm. J Ind Microbiol Biotechnol 29(6):339–346

    MATH  Google Scholar 

  • Cogan N, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21(2):147–166

    MATH  Google Scholar 

  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264

    Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Google Scholar 

  • Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2012) Multiphase flows with droplets and particles, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Danese PN, Pratt LA, Kolter R (2000) Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182(12):3593–3596

    Google Scholar 

  • Davis RH, Serayssol J-M, Hinch EJ (1986) The elastohydrodynamic collision of two spheres. J Fluid Mech 163:479–497

    Google Scholar 

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • Duddu R, Chopp DL, Moran B (2008) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104

    Google Scholar 

  • Flemming HC (2009) Why microorganisms live in biofilms and the problem of biofouling. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K (eds) Marine and industrial biofouling. Springer, Berlin, pp 3–12. https://doi.org/10.1007/978-3-540-69796-1_1

    Chapter  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Google Scholar 

  • Flory PJ, Krigbaum WR (1951) Thermodynamics of high polymer solutions. Annu Rev Phys Chem 2:383–402

    Google Scholar 

  • Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K (2014) Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Controlled Release 190:607–623

    Google Scholar 

  • Frederick MR, Kuttler C, Hense BA, Eberl HJ (2011) A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theor Biol Med Model 8:8

    Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056

    Google Scholar 

  • Ghafoor A, Hay ID, Rehm BHA (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77(15):5238–5246

    Google Scholar 

  • Ghosh P, Mondal J, Ben-Jacob E, Levine H (2015) Mechanically-driven phase separation in a growing bacterial colony. Proc Natl Acad Sci 112(17):E2166–E2173

    Google Scholar 

  • Giaouris E, Heir E, Hébraud M, Chorianopoulos N, Langsrud S, Møretrø T, Habimana O, Desvaux M, Renier S, Nychas GJ (2014) Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 97:298–309

    Google Scholar 

  • Gorochowski TE, Matyjaszkiewicz A, Todd T, Oak N, Kowalska K, Reid S, Tsaneva-Atanasova KT, Savery NJ, Grierson CS, di Bernardo M (2012) BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS ONE 7(8):e42790

    Google Scholar 

  • Gutiérrez M, Gregorio-Godoy P, del Pulgar GP, Muñoz LE, Sáez S, Rodríguez-Patón A (2017) A new improved and extended version of the multicell bacterial simulator gro. ACS Synth Biol 6:1496–1508

    Google Scholar 

  • Hackbusch W (1985) Multi-grid methods and applications. Springer Press, New York

    MATH  Google Scholar 

  • Hellweger FL, Bucci V (2009) A bunch of tiny individuals—individual-based modeling for microbes. Ecol Model 220:8–22

    Google Scholar 

  • Hellweger FL, Clegg RJ, Clark JR, Plugge CM, Kreft JU (2016) Advancing microbial sciences by individual-based modeling. Nat Rev Microbiol 14:461–471

    Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183(18):5395–5401

    Google Scholar 

  • Hertz H (1882) Über die Berührung fester elastischer Körper. J reine und angewandte Mathematik 92:156–171

    MATH  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    Google Scholar 

  • Horn H, Lackner S (2014) Modeling of biofilm systems: a review. Adv Biochem Eng Biotechnol 146:53–76

    Google Scholar 

  • Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440

    Google Scholar 

  • Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS, Sadovskaya I, Secor PR, Tseng BS, Scian M, Filloux A, Wozniak DJ, Howell PL, Parsek MR (2015) Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci 112(36):11353–11358

    Google Scholar 

  • Joseph GG, Zenit R, Hunt ML, Rosenwinkel AM (2001) Particle-wall collisions in a viscous fluid. J Fluid Mech 433:329–346

    MATH  Google Scholar 

  • Kapur V, Charkoudian JC, Kessler SB, Anderson JL (1996) Hydrodynamic permeability of hydrogels stabilized within porous membranes. Ind Eng Chem Res 35:3179–3185

    Google Scholar 

  • Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 8:37–57

    Google Scholar 

  • Klapper I, Dockery J (2006) Role of cohesion in the material description of biofilms. Phys Rev E 74:031902

    MathSciNet  Google Scholar 

  • Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Review 52(2):221–265

    MathSciNet  MATH  Google Scholar 

  • Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AEL, Irie Y, Jensen PØ, Diggle SP, Allen RJ, Gordon V, Bjarnsholt T (2016) Role of multicellular aggregates in biofilm formation. mBio 7(2):e00216–e00237

    Google Scholar 

  • Kreft J-U, Wimpenny JWT (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43(6):135–141

    Google Scholar 

  • Kreft JU, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147(11):2897–2912

    Google Scholar 

  • Lardon LA, Merkey BV, Martins S, Dotsch A, Picioreanu C, Kreft J-U, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13(9):2416–2434

    Google Scholar 

  • Lau PC, Dutcher JR, Beveridge TJ, Lam JS (2009a) Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophys J 96(7):2935–2948

    Google Scholar 

  • Lau PC, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009b) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 191(21):6618–6631

    Google Scholar 

  • Lear G (ed) (2016) Biofilms in bioremediation: current research and emerging technologies. Caister Academic Press, Poole

    Google Scholar 

  • Lewandowski Z, Boltz J (2011) Biofilms in water and wastewater treatment. In: Wilderer P (ed) Treatise on water science, vol 4. Elsevier, London, pp 529–570

    Google Scholar 

  • Marshall JS (2009) Discrete-element modeling of particulate aerosol flows. J Comput Phys 228:1541–1561

    MATH  Google Scholar 

  • Marshall JS (2011) Viscous damping force during head-on collision of two spherical particles. Phys Fluids 23(1):013305

    Google Scholar 

  • Marshall JS, Li S (2014) Adhesive particle flow: a discrete element approach. Cambridge University Press, New York

    Google Scholar 

  • Marshall JS, Sala K (2013) Comparison of methods for computing the concentration field of a particulate flow. Int J Multiph Flow 56:4–14

    Google Scholar 

  • Mattei MR, Frunzo L, D’Acunto B, Pechaud Y, Pirozzi F, Esposito G (2018) Continuum and discrete approach in modeling biofilm development and structure: a review. J Math Biol 76(4):945–1003

    MathSciNet  MATH  Google Scholar 

  • Mazza MG (2016) The physics of biofilms—an introduction. J Phys D Appl Phys 49:203001

    Google Scholar 

  • Melaugh G, Hutchison J, Kragh KN, Irie Y, Roberts A, Bjarnsholt T, Diggle SP, Gordon VD, Allen RJ (2016) Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLoS ONE 11(3):e0149683

    Google Scholar 

  • Monaghan JJ (1985) Extrapolating B splines for interpolation. J Comput Phys 60(2):253–262

    MathSciNet  MATH  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    Google Scholar 

  • Napov A, Notay Y (2011) Smoothing factor, order of prolongation and actual multigrid convergence. Numer Math 118:457–483

    MathSciNet  MATH  Google Scholar 

  • Paramonova E, Kalmykowa OJ, van der Mei HC, Busscher HJ, Sharma PK (2009a) Impact of hydrodynamics on oral biofilm strength. J Dent Res 88(10):922–926

    Google Scholar 

  • Paramonova E, Krom BP, van der Mei HC, Busscher HJ, Sharma PK (2009b) Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology 155:1997–2003

    Google Scholar 

  • Pavasant P, Dos Santos LM, Pistikopoulos EN, Livingston AG (1996) Prediction of optimal thickness for membrane-attached biofilms growing in an extractive membrane bioreactor. Biotechnol Bioeng 52(3):373–386

    Google Scholar 

  • Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45:3367–3373

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998a) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57(6):718–731

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998b) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58(1):101–116

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modelling of biofilm structure. Water Sci Technol 39:115–122

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000a) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68:355–369

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000b) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69(5):504–515

    Google Scholar 

  • Roose T, Fowler AC (2008) Network development in biological gels: role in lymphatic vessel development. Bull Math Biol 70(6):1772–1789

    MathSciNet  MATH  Google Scholar 

  • Rudge TJ, Steiner PJ, Phillips A, Haseloff J (2012) Computational modeling of synthetic microbial biofilms. ACS Synth Biol 1:345–352

    Google Scholar 

  • Schluter J, Nadell CD, Bassler BL, Foster KR (2015) Adhesion as a weapon in microbial competition. ISME J 9:139–149

    Google Scholar 

  • Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S, Kolter R, Weitz DA, Brenner MP (2012) Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci 109(4):1116–1121

    Google Scholar 

  • Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P (2004) Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93(9):098102

    Google Scholar 

  • Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585

    Google Scholar 

  • Srivastava S, Bhargava A (2016) Biofilms and human health. Biotech Lett 38:1–22

    Google Scholar 

  • Stewart PS (2003) Diffusion in biofilm. J Bacteriol 185(5):1485–1491

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Google Scholar 

  • Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227

    Google Scholar 

  • Tokita M (1993) Friction coefficient of polymer networks of gels and solvent. In: Dusek K (ed) Advances in polymer science 110. Responsive gels: volume transitions II. Springer, Berlin, pp 27–47

    Google Scholar 

  • Tokita M, Tanaka T (1991) Friction coefficient of polymer networks of gels. J Chem Phys 95:4613–4619

    Google Scholar 

  • Valladares Linares R, Sz BS, Li Z, AbuGhdeeb M, Amy G, Vrouwenvelder JS (2014) Impact of spacer thickness on biofouling in forward osmosis. Water Res 57:223–233

    Google Scholar 

  • Van Lent J (2006) Multigrid methods for time-dependent partial differential equations. Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • Vanka SP (1986) Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. J Comput Phys 65:138–158

    MathSciNet  MATH  Google Scholar 

  • Wanner O, Gujer W (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328

    Google Scholar 

  • Warren MR, Sun H, Yan Y, Cremer J, Li B, Hwa T (2019) Spatiotemporal establishment of dense bacterial colonies growing on hard agar. eLife 8:e41093

    Google Scholar 

  • Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Ser 62(62):100–111

    Google Scholar 

  • Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA (2011) Biofilms as complex fluids. MRS Bull 36:385–391

    Google Scholar 

  • Winstanley HF, Chapwanya M, McGuinness MJ, Fowler AC (2011) A polymer–solvent model of biofilm growth. Proc R Soc A 467(2129):1449–1467

    MathSciNet  MATH  Google Scholar 

  • Wolgemuth CW, Mogilner A, Oster G (2004) The hydration dynamics of polyelectrolyte gels with applications to cell motility and drug delivery. Eur Biophys J 33(2):146–158

    Google Scholar 

  • Yang F-L, Hunt ML (2006) Dynamics of particle-particle collisions in a viscous liquid. Phys Fluids 18:121506

    MATH  Google Scholar 

  • Zhang Z, Nadezhina E, Wilkinson KJ (2011) Quantifying diffusion in a biofilm of Streptococcus mutans. Antimicrob Agents Chemother 55(3):1075–1081

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Aeronautics and Space Administration (NASA) under cooperative Agreement Number NNX16AQ96A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Marshall.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Marshall, J.S. & Wargo, M.J. Hybrid Model of Bacterial Biofilm Growth. Bull Math Biol 82, 27 (2020). https://doi.org/10.1007/s11538-020-00701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11538-020-00701-6

Keywords

Navigation