Skip to main content
Log in

Microfluidic design for in-vitro liver zonation—a numerical analysis using COMSOL Multiphysics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The liver is one of the most important organs, with a complex physiology. Current in-vitro approaches are not accurate for disease modeling and drug toxicity research. One of those features is liver zonation, where cells display different physiological states due to different levels of oxygen and nutrient supplements. Organ-on-a-chip technology employs microfluidic platforms that enable a controlled environment for in-vitro cell culture. In this study, we propose a microfluidic design embedding a gas channel (of ambient air), creating an oxygen gradient. We numerically simulate different flow rates and cell densities with the COMSOL Multiphysics package considering cell-specific consumption rates of oxygen and glucose. We establish the cell density and flow rate for optimum oxygen and glucose distribution in the cell culture chamber. Furthermore, we show that a physiologically relevant concentration of oxygen and glucose in the chip is reached after 24 h and 30 min, respectively. The proposed microfluidic design and optimal parameters we identify in this paper provide a tool for in-vitro liver zonation studies. However, the microfluidic design is not exclusively for liver cell experiments but is foreseen to be applicable in cell studies where different gas concentration gradients are critical, e.g., studying hypoxia or toxic gas impact.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Juza RM, Pauli EM (2014) Clinical and surgical anatomy of the liver: a review for clinicians. Clin Anat 27(5):764–769. https://doi.org/10.1002/ca.22350

    Article  PubMed  Google Scholar 

  2. Wiśniewski JR, Vildhede A, Norén A, Artursson P (2016) In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J Proteomics 136:234–247. https://doi.org/10.1016/j.jprot.2016.01.016

    Article  PubMed  CAS  Google Scholar 

  3. Kanabekova P, Kadyrova A, Kulsharova G (2022) Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines 13(3):428. https://doi.org/10.3390/mi13030428

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M (2020) Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 116:67–83. https://doi.org/10.1016/j.actbio.2020.08.041

    Article  PubMed  CAS  Google Scholar 

  5. Tomlinson L, Hyndman L, Firman JW, Bentley R, Kyffin JA, Webb SD, McGinty S, Sharma P (2019) In vitro liver zonation of primary rat hepatocytes. Front Bioeng Biotechnol 7:17. https://doi.org/10.3389/fbioe.2019.00017

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cunningham RP, Porat-Shliom N (2021) Liver zonation–revisiting old questions with new technologies. Front Physiol 12(2021):732929. https://doi.org/10.3389/fphys.2021.732929

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y (2020) Induction of in vitro metabolic zonation in primary hepatocytes requires both near-physiological oxygen concentration and flux. Front Bioeng Biotechnol 8:524. https://doi.org/10.3389/fbioe.2020.00524

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kietzmann T (2019) Liver zonation in health and disease: hypoxia and hypoxia-inducible transcription factors as concert masters. Int J Mol Sci 20(9):2347. https://doi.org/10.3390/ijms20092347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kietzmann T (2017) Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 11:622–630. https://doi.org/10.1016/j.redox.2017.01.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li X, George SM, Vernetti L, Gough AH, Taylor DL (2018) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18(17):2614–2631. https://doi.org/10.1039/C8LC00418H

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, Vernetti LA, Taylor DL (2017) Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med 242(16):1617–1632. https://doi.org/10.1177/1535370217703978

    Article  CAS  Google Scholar 

  12. Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG (2010) Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58. https://doi.org/10.1039/B913221J

    Article  PubMed  CAS  Google Scholar 

  13. Tonon F, Giobbe GG, Zambon A, Luni C, Gagliano O, Floreani A, Grassi G, Elvassore N (2019) In vitro metabolic zonation through oxygen gradient on a chip. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-49412-6

    Article  CAS  Google Scholar 

  14. Chang C-W, Cheng Y-J, Tu M, Chen Y-H, Peng C-C, Liao W-H, Tung Y-C (2014) A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab Chip 14(19):3762–3772. https://doi.org/10.1039/C4LC00732H

    Article  PubMed  CAS  Google Scholar 

  15. Lo JF, Sinkala E, Eddington DT (2010) Oxygen gradients for open well cellular cultures via microfluidic substrates. Lab Chip 10(18):2394–2401. https://doi.org/10.1039/C004660D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tornberg K, Välimäki H, Valaskivi S, Mäki A-J, Jokinen M, Kreutzer J, Kallio P (2022) Compartmentalized organ-on-a-chip structure for spatiotemporal control of oxygen microenvironments. Biomed Microdevice 24(4):1–11. https://doi.org/10.1007/s10544-022-00634-y

    Article  CAS  Google Scholar 

  17. Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB (2018) Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-27179-6

    Article  CAS  Google Scholar 

  18. Kang YB, Eo J, Bulutoglu B, Yarmush ML, Usta OB (2020) Progressive hypoxia-on-a-chip: An in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease. Biotechnol Bioeng 117(3):763–775. https://doi.org/10.1002/bit.27225

    Article  PubMed  CAS  Google Scholar 

  19. Han X, Zhu F, Chen L, Wu H, Wang T, Chen K (2020) Mechanism analysis of toxicity of sodium sulfite to human hepatocytes L02. Mol Cell Biochem 473(1):25–37. https://doi.org/10.1007/s11010-020-03805-8

    Article  PubMed  CAS  Google Scholar 

  20. Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB (2019) A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip 19(18):3022–3031. https://doi.org/10.1039/C9LC00354A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662. https://doi.org/10.1088/0964-1726/11/5/306

    Article  CAS  Google Scholar 

  22. Place TL, Domann FE, Case AJ (2017) Limitations of oxygen delivery to cells in culture: an underappreciated problem in basic and translational research. Free Radical Biol Med 113:311–322. https://doi.org/10.1016/j.freeradbiomed.2017.10.003

    Article  CAS  Google Scholar 

  23. Shakeri A, Khan S, Didar TF (2021) Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip 21(16):3053–3075. https://doi.org/10.1039/D1LC00288K

    Article  PubMed  CAS  Google Scholar 

  24. Müller B, Sulzer P, Walch M, Zirath H, Buryška T, Rothbauer M, Ertl P, Mayr T (2021) Measurement of respiration and acidification rates of mammalian cells in thermoplastic microfluidic devices. Sens Actuators B: Chemical 334(2021):129664. https://doi.org/10.1016/j.snb.2021.129664

    Article  CAS  Google Scholar 

  25. Carlborg CF, Haraldsson T, Öberg K, Malkoch M, Van Der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11(18):3136–3147. https://doi.org/10.1039/C1LC20388F

    Article  PubMed  CAS  Google Scholar 

  26. Wölfle D, Schmidt H, Jungermann K (1983) Short-term modulation of glycogen metabolism, glycolysis and gluconeogenesis by physiological oxygen concentrations in hepatocyte cultures. Eur J Biochem 135(3):405–412. https://doi.org/10.1111/j.1432-1033.1983.tb07667.x

    Article  PubMed  Google Scholar 

  27. Goldstick T.K., Ciuryla V.T., Zuckerman L (1976) Diffusion of oxygen in plasma and blood, Oxygen transport to tissue—ii (1976) 183–190

  28. Wagner BA, Venkataraman S, Buettner GR (2011) The rate of oxygen utilization by cells. Free Radical Biol Med 51(3):700–712. https://doi.org/10.1016/j.freeradbiomed.2011.05.024

    Article  CAS  Google Scholar 

  29. Buchwald P (2009) FEM-based oxygen consumption and cell viability models for avascular pancreatic islets. Theor Biol Med Model 6(1):1–13. https://doi.org/10.1186/1742-4682-6-5

    Article  Google Scholar 

  30. Markov DA, Lillie EM, Garbett SP, McCawley LJ (2014) Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomed Microdevice 16(1):91–96. https://doi.org/10.1007/s10544-013-9808-2

    Article  CAS  Google Scholar 

  31. Shiku H, Saito T, Wu C-C, Yasukawa T, Yokoo M, Abe H, Matsue T, Yamada H (2006) Oxygen permeability of surface-modified poly (dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem Lett 35(2):234–235. https://doi.org/10.1246/cl.2006.234

    Article  CAS  Google Scholar 

  32. Bavli D, Prill S, Ezra E, Levy G, Cohen M, Vinken M, Vanfleteren J, Jaeger M, Nahmias Y (2016) Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci 113(16):E2231–E2240. https://doi.org/10.1073/pnas.1522556113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Thermofischer Scientific Website (2023). https://www.thermofisher.com/order/catalog/product/11885084. Accessed 24 Jul 2023

  34. Poon C (2022) Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices, bioRxiv (2020) https://doi.org/10.1016/j.jmbbm.2021.105024

  35. Miyamoto Y, Ikeuchi M, Noguchi H, Yagi T, Hayashi S (2015) Spheroid formation and evaluation of hepatic cells in a three-dimensional culture device. Cell Med 8(1–2):47–56

    Article  PubMed  PubMed Central  Google Scholar 

  36. ATCC webpage (2023) <https://www.atcc.org/products/hb-8065>. Accessed 24 Jul 2023

  37. Cogger VC, Hunt NJ, Le Couteur DG (2020) Fenestrations in the liver sinusoidal endothelial cell, The liver: biology and pathobiology (2020) 435–443 https://doi.org/10.1002/9781119436812.ch35

  38. Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress–an important determinant of endothelial cell function and structure–in the arterial system in vivo. J Vasc Res 43(3):251–269. https://doi.org/10.1159/000091648

    Article  PubMed  Google Scholar 

  39. Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73(5):379–389. https://doi.org/10.1002/bit.1071

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka Y, Yamato M, Okano T, Kitamori T, Sato K (2006) Evaluation of effects of shear stress on hepatocytes by a microchip-based system. Meas Sci Technol 17(12):3167. https://doi.org/10.1088/0957-0233/17/12/S08

    Article  CAS  Google Scholar 

  41. Li W, Li P, Li N, Du Y, Lü S, Elad D, Long M (2021) Matrix stiffness and shear stresses modulate hepatocyte functions in a fibrotic liver sinusoidal model. Am J Physiol Gastrointest Liver Physiol 320(3):G272–G282. https://doi.org/10.1152/ajpgi.00379.2019

    Article  PubMed  Google Scholar 

  42. Lalor P, Adams D (1999) Adhesion of lymphocytes to hepatic endothelium. Mol Pathol 52(4):214. https://doi.org/10.1136/mp.52.4.214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sameereh Hashemi-Najafabadi or Caroline Beck Adiels.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 742 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, R., Hashemi-Najafabadi, S., Ghiass, M.A. et al. Microfluidic design for in-vitro liver zonation—a numerical analysis using COMSOL Multiphysics. Med Biol Eng Comput 62, 121–133 (2024). https://doi.org/10.1007/s11517-023-02936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02936-6

Keywords

Navigation