Skip to main content
Log in

Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick’s Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EOF:

Electroosmotic flow

PDMS:

Polydimethylsiloxane

Pt-TPFP:

Platinum(II)-tetrakis(pentaflourophenyl)porphyrin

TTB:

Thick tissue bioreactor

References

  • M. Adler, M. Polinkovsky, E. Gutierrez, and A. Groisman, Lab Chip 10, 388 (2010)

    Google Scholar 

  • Y. Amao, I. Okura, Tanpakushitsu Kakusan Koso 43, 1492 (1998)

    Google Scholar 

  • Y. Amao, T. Miyashita, I. Okura, J. Fluor. Chem. 107, 101 (2001)

    Article  Google Scholar 

  • R. Cairns, I. Papandreou, N. Denko, Mol. Cancer Res. 4, 61 (2006)

    Article  Google Scholar 

  • E.R. Carraway, J.N. Demas, B.A. Degraff, Anal. Chem. 63, 332 (1991a)

    Article  Google Scholar 

  • E.R. Carraway, J.N. Demas, B.A. Degraff, J.R. Bacon, Anal. Chem. 63, 337 (1991b)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  • C.S. Effenhauser, G.J. Bruin, A. Paulus, M. Ehrat, Anal. Chem. 69, 3451 (1997)

    Article  Google Scholar 

  • K. Efimenko, W.E. Wallace, J. Genzer, J. Colloid Interface Sci. 254, 306 (2002)

    Article  Google Scholar 

  • D. Erickson, D. Sinton, D. Li, Lab Chip 3, 141 (2003)

    Article  Google Scholar 

  • J.L. Fritz, M.J. Owen, J. Adhes. 54, 33 (1995)

    Article  Google Scholar 

  • Y. Gao, D. Majumdar, B. Jovanovic, C. Shaifer, P.C. Lin, A. Zijlstra, D.J. Webb, D. Li, Biomed. Microdevices 13, 539 (2011)

    Article  Google Scholar 

  • R.A. Gatenby, R.J. Gillies, Nat. Rev. Cancer 8, 56 (2008)

    Article  Google Scholar 

  • R.A. Gatenby, K. Smallbone, P.K. Maini, F. Rose, J. Averill, R.B. Nagle, L. Worrall, R.J. Gillies, Br.J. Cancer 97, 646 (2007)

    Article  Google Scholar 

  • H. Hillborg, J.F. Ankner, U.W. Gedde, G.D. Smith, H.K. Yasuda, K. Wikstrom, Polymer 41, 6851 (2000)

    Article  Google Scholar 

  • B.H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, J. Microelectromech. Syst. 9, 76 (2000)

    Article  Google Scholar 

  • G.E. Khalil, A. Chang, M. Gouterman, J.B. Callis, L.R. Dalton, N.J. Turro, and S. Jockusch, Rev. Sci. Instrum. 76, 054101 (2005)

    Google Scholar 

  • M.S. Kim, J.H. Yeon, J.K. Park, Biomed. Microdevices 9, 25 (2007)

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20, 750 (2004)

    Article  Google Scholar 

  • G.B. Lee, C.H. Lin, K.H. Lee, Y.F. Lin, Electrophoresis 26, 4616 (2005)

    Article  Google Scholar 

  • L. Liu, K. Loutherback, D. Liao, D. Yeater, G. Lambert, A. Estevez-Torres, J.C. Sturm, R.H. Getzenberg, R.H. Austin, Lab Chip 10, 1807 (2010)

    Article  Google Scholar 

  • K. Lundgren, C. Holm, G. Landberg, Cell Mol. Life Sci. 64, 3233 (2007)

    Article  Google Scholar 

  • D.A. Markov, J.Q. Lu, P.C. Samson, J.P. Wikswo, L.J. McCawley, Lab Chip 12, 4560 (2012)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002)

    Article  Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)

    Article  Google Scholar 

  • M.J. Owen, P.J. Smith, J. Adhes. Sci. Technol. 8, 1063 (1994)

    Article  Google Scholar 

  • M. Polinkovsky, E. Gutierrez, A. Levchenko, and A. Groisman, Lab Chip 9, 1073 (2009)

    Google Scholar 

  • A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, F. Baudenbacher, Biomed. Microdevices 6, 325 (2004)

    Article  Google Scholar 

  • X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, J. Chromatogr. B: Biomed. Sci. Appl. 762, 117 (2001)

    Article  Google Scholar 

  • Y. Rharbi, A. Yekta, M.A. Winnik, Anal. Chem. 71, 5045 (1999)

    Article  Google Scholar 

  • T. Saito, C.C. Wu, H. Shiku, T. Yasukawa, M. Yokoo, T. Ito-Sasaki, H. Abe, H. Hoshi, T. Matsue, Analyst 131, 1006 (2006)

    Article  Google Scholar 

  • P.C. Thomas, M. Halter, A. Tona, S.R. Raghavan, A.L. Plant, S.P. Forry, Anal. Chem. 81, 9239 (2009)

    Article  Google Scholar 

  • P.C. Thomas, S.R. Raghavan, S.P. Forry, Anal. Chem. 83, 8821 (2011)

    Article  Google Scholar 

  • O. Tredan, C.M. Galmarini, K. Patel, I.F. Tannock, J. Natl. Cancer Inst. 99, 1441 (2007)

    Article  Google Scholar 

  • J.A. Vickers, M.M. Caulum, C.S. Henry, Anal. Chem. 78, 7446 (2006)

    Article  Google Scholar 

  • X. Wang, C. Cheng, S. Wang, S. Liu, Microfluid. Nanofluidics. 6, 145 (2009)

    Article  Google Scholar 

  • Welty, J.R., Wicks, C.E., Wilson R.E., Rorrer, G, “Fundamentals of Momentum, Heat, and Mass Transfer” 4th ed. Wiley, 2001

  • Y. Zhang, M. Li, Q. Yao, C. Chen, Med. Sci. Monit. 13, RA175 (2007)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Department of Defense Breast Cancer Research Program (DOD BCRP) grants W81XWH-09-1-0444 and W81XWH-10-1-0157 and NIH/NCI R21 CA126728-01 to L.J.M., by 1UH2TR000491-01, by the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) and through the Searle Systems Biology and Bioengineering Undergraduate Research Experience (Searle SyBBURE) to E.M.L. We would like to thank VINSE for use of Fluorolog-3 FL3-111 Spectrophotofluorometer, L. Smith for help with establishing conditions for Figure S5, and J.P. Wikswo and P.C. Samson for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry A. Markov or Lisa J. McCawley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Relationship between spin speed and the resulting thickness of PDMS membrane after curing at 65 °C for 4 h. Spinner: Laurell WS-400-6NPP; conditions: 2 s spread cycle at 600 rpm, 30 s at designated speed. Note: These parameters are given as a reference. The end-user would have to adjust them to accommodate their actual setup and equipment. Time course of fluorescence quenching for thin membranes is shown in Figure S4. (PDF 52.4 kb)

Figure S2

Derivations of the formulas used for non-linear fit to determine D. (PDF 38 kb)

Figure S3

Oxygen sensing film calibration. The Ksv coefficient from the Stern-Volmer relationship is found as a slope of the calibration curve. (PDF 15 kb)

Figure S4

Fluorescence quenching as a function of oxygen diffusing through the PDMS membranes of various thicknesses. (PDF 135 kb)

Figure S5

Changes in emission spectra for Pt-TFPP compound immobilized within polystyrene matrix in the presence of atmospheric oxygen (Ex = 540 +/−2.5 nm) visualized with Fluorolog-3 FL3-111 Spectrophotofluorometer. (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, D.A., Lillie, E.M., Garbett, S.P. et al. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomed Microdevices 16, 91–96 (2014). https://doi.org/10.1007/s10544-013-9808-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9808-2

Keywords

Navigation