Skip to main content
Log in

Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Biocatalysts are intrinsically reactive and hence their operational stability is of vital significance for any bioprocess. The setback in biocatalyst stability has been tackled from diverse prospects. Inherently, stable biocatalysts are markedly realized and a regular attempt is being made to seek out new organisms that harbor them. Here, we analyzed the industrial biocatalyst lipase A (Native) of Bacillus subtilis and its six thermostable mutants (2M, 3M, 4M, 6M, 9M and 12M) computationally using conformational sampling technique. Consequently, the various structural events deciphering thermostability like root mean square deviation, root mean square fluctuation, radius of gyration and polar surface area showed mutant 12M to be highly stable with statistical validation. Besides, static model analysis involving intra-molecular interactions, secondary structure, solvent accessibility, hydrogen bond pattern, simulated thermal denaturation and desolvation energy also supported 12M comparatively. Of note, the presence of high secondary structural rigidity and hydrogen bonds increased thermostability and functionality of 12M, thus selecting it as a best template for designing thermostable lipases in future. Also, this study has a significant implication toward a better understanding of conformational sampling in enzyme catalysis and enzyme engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya P, Rajakumara E, Sankaranarayanan R, Rao N M (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. J Mol Biol, 341(5): 1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Ahmad S, Kamal M Z, Sankaranarayanan R, Rao N M (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol, 381(2): 324–340

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Rippmann F, Barnickel G, Gohlke H (2011). A normal modebased geometric simulation approach for exploring biologically relevant conformational transitions in proteins. J Chem Inf Model, 51 (7): 1604–1622

    Article  CAS  PubMed  Google Scholar 

  • Annenkov G A, Klepikov N N, Martynova L P, Puzanov V A (2004). Wide range of the use of natural lipases and esterases to inhibit Mycobacterium tuberculosis. Probl Tuberk Bolezn Legk, (6): 52–56

    PubMed  Google Scholar 

  • Bandyopadhyay S, Chakraborty S, Bagchi B (2005). Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J Am Chem Soc, 127(47): 16660–16667

    Article  CAS  PubMed  Google Scholar 

  • Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E (2000). The Protein Data Bank. Nucleic Acids Res, 28(1): 235–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bikadi Z, Demko L, Hazai E (2007). Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys, 461(2): 225–234

    Article  CAS  PubMed  Google Scholar 

  • Bruins M E, Janssen A E, Boom R M (2001). Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol, 90(2): 155–186

    Article  CAS  PubMed  Google Scholar 

  • Cavallo L, Kleinjung J, Fraternali F (2003). POPS: A fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res, 31(13): 3364–3366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou C C, Rajasekaran M, Chen C (2010). An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking. BMC Bioinformatics, 11(1): 334

    Article  PubMed Central  PubMed  Google Scholar 

  • Cossio P, Granata D, Laio A, Seno F, Trovato A (2012). A simple and efficient statistical potential for scoring ensembles of protein structures. Sci Rep, 2(14):Available at: http://www.nature.com/doifinder/10.1038/srep00351

    Google Scholar 

  • Duhovny D, Nussinov R, Wolfson H J (2002). Efficient unbound docking of rigid molecules. In Algorithms in bioinformatics. Springer, pp. 185–200

    Chapter  Google Scholar 

  • Eggert T, van Pouderoyen G, Dijkstra B W, Jaeger K E (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett, 502(3): 89–92

    Article  CAS  PubMed  Google Scholar 

  • Feldblum E S, Arkin I T (2014). Strength of a bifurcated H bond. Proc Natl Acad Sci USA, 111(11): 4085–4090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fersht A R, Bycroft M, Horovitz A, Kellis J T, Matouschek A, Serrano L (1991). Pathway and stability of protein folding. Philos Trans R Soc Lond B Biol Sci, 332(1263): 171–176

    Article  CAS  PubMed  Google Scholar 

  • Gaillard P, Carrupt P A, Testa B, Boudon A (1994). Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des, 8(2): 83–96

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger J, Rudolph C, Sadowski J (1990). Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput. Methodol., 3(6): 537–547

    Article  CAS  Google Scholar 

  • Goodenough P W, Jenkins J A (1991). Protein engineering to change thermal stability for food enzymes. Biochem Soc Trans, 19(3): 655–662

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol, 64(6): 763–781

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah A A, Hameed A (2006). Industrial applications of microbial lipases. Enzyme Microb Technol, 39(2): 235–251

    Article  CAS  Google Scholar 

  • Heinig M, Frishman D (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res, 32(Web Server issue): W500–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Houde A, Kademi A, Leblanc D (2004). Lipases and their industrial applications: an overview. Appl Biochem Biotechnol, 118(1–3): 155–170

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998). Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles, 2(3): 185–190

    Article  CAS  PubMed  Google Scholar 

  • Jaeger K E, Reetz M T (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol, 16(9): 396–403

    Article  CAS  PubMed  Google Scholar 

  • Jamroz M, Kolinski A, Kmiecik S (2013). CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res, 41 (Web Server issue): W427–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Ji X L, Liu S Q (2011). Is stoichiometry-driven protein folding getting out of thermodynamic control? J Biomol Struct Dyn, 28(4): 621–623, discussion 669–674

    Article  CAS  PubMed  Google Scholar 

  • Kamal M Z, Ahmad S, Molugu T R, Vijayalakshmi A, Deshmukh M V, Sankaranarayanan R, Rao N M (2011). In vitro evolved nonaggregating and thermostable lipase: structural and thermodynamic investigation. J Mol Biol, 413(3): 726–741

    Article  CAS  PubMed  Google Scholar 

  • Keating K S, Flores S C, Gerstein M B, Kuhn L A (2009). StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci, 18(2): 359–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klibanov A M (1990). Asymmetric transformations catalyzed by enzymes in organic solvents. Acc Chem Res, 23(4): 114–120

    Article  CAS  Google Scholar 

  • Klibanov A M (1997). Why are enzymes less active in organic solvents than in water? Trends Biotechnol, 15(3): 97–101

    Article  CAS  PubMed  Google Scholar 

  • Krüger D M, Ahmed A, Gohlke H (2012). NMSim web server: integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Res, 40(Web Server issue): W310–6

    Article  Google Scholar 

  • Kruskal W H (1952). A nonparametric test for the several sample problem. Ann Math Stat, 23(4): 525–540

    Article  Google Scholar 

  • Kynclova E, Hartig A, Schalkhammer T (1995). Oligonucleotide labelled lipase as a new sensitive hybridization probe and its use in bio-assays and biosensors. J Mol Recognit, 8(1–2): 139–145

    Article  CAS  PubMed  Google Scholar 

  • Larios A, García H S, Oliart R M, Valerio-Alfaro G (2004). Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl Microbiol Biotechnol, 65(4): 373–376

    Article  CAS  PubMed  Google Scholar 

  • Linko Y Y, Lämsä M, Wu X, Uosukainen E, Seppälä J, Linko P (1998). Biodegradable products by lipase biocatalysis. J Biotechnol, 66(1): 41–50

    Article  CAS  PubMed  Google Scholar 

  • Lobanov M Y, Bogatyreva N S, Galzitskaya O V (2008). Radius of gyration as an indicator of protein structure compactness. Mol Biol, 42(4): 623–628

    Article  CAS  Google Scholar 

  • Lou Y C, Wang I, Rajasekaran M, Kao Y F, Ho MR, Hsu S T D, Chou S H, Wu S H, Chen C (2014). Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res, 42(6): 4080–4093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lou Y C, Wei S Y, Rajasekaran M, Chou C C, Hsu H M, Tai J H, Chen C (2009). NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Nucleic Acids Res, 37(7): 2381–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo S C, Lou Y C, Rajasekaran M, Chang Y W, Hsiao C D, Chen C (2013). Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem, 288(35): 25551–25561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Zhang Z, Wang B, Kong X, Wang Y, Cao S, Feng Y (2006). Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif, 45(1): 22–29

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Peng H P, Yang A S (2014). Prediction of fatty acidbinding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophys Chem, 192: 10–19

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Peng H P, Yang A S (2014). Prediction of FMN-binding residues with three-dimensional probability distributions of interacting atoms on protein surfaces. J Theor Biol, 343: 154–161

    Article  CAS  PubMed  Google Scholar 

  • Munoz A, Katerndahl D A (2000). Diagnosis and management of acute pancreatitis. Am Fam Physician, 62(1): 164–174

    CAS  PubMed  Google Scholar 

  • Noureddini H, Gao X, Philkana R S (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol, 96(7): 769–777

    Article  CAS  PubMed  Google Scholar 

  • Pace C N, Fu H, Fryar K L, Landua J, Trevino S R, Shirley B A, Hendricks M M, Iimura S, Gajiwala K, Scholtz J M, Grimsley G R (2011). Contribution of hydrophobic interactions to protein stability. J Mol Biol, 408(3): 514–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pace C N, Fu H, Lee Fryar K, Landua J, Trevino S R, Schell D, Thurlkill R L, Imura S, Scholtz J M, Gajiwala K, Sevcik J, Urbanikova L, Myers J K, Takano K, Hebert E J, Shirley B A, Grimsley G R (2014). Contribution of hydrogen bonds to protein stability. Protein Sci, 23 (5): 652–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pace C N, Shirley B A, McNutt M, Gajiwala K (1996). Forces contributing to the conformational stability of proteins. FASEB J, 10 (1): 75–83

    CAS  PubMed  Google Scholar 

  • Pedretti A, Villa L, Vistoli G (2004). VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des, 18(3): 167–173

    Article  CAS  PubMed  Google Scholar 

  • Porollo A, Meller J (2010). POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations. Nucleic Acids Res, 38(Web Server issue): W662–6

    Article  Google Scholar 

  • Rajasekaran M, Abirami S, Chen C (2011). Effects of single nucleotide polymorphisms on human N-acetyltransferase 2 structure and dynamics by molecular dynamics simulation. PLoS ONE, 6(9): e25801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajasekaran M, Chen C (2012). Structural effect of the L16Q, K50E, and R53P mutations on homeodomain of pituitary homeobox protein 2. Int J Biol Macromol, 51(3): 305–313

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H J (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 33(Web Server issue): W363–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma R, Chisti Y, Banerjee U C (2001). Production, purification, characterization, and applications of lipases. Biotechnol Adv, 19(8): 627–662

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bulusu G, Mitra A (2015). Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. J Phys Chem B, 119(2): 392–409

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Sinha S (2014). Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective. PLoS ONE, 9(8): e102856

    Article  PubMed Central  PubMed  Google Scholar 

  • Suhre K, Sanejouand Y H (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res, 32(Web Server issue): W610–4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian F, Yang C, Wang C, Guo T, Zhou P (2014). Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model, 20(6): 2257

    Article  PubMed  Google Scholar 

  • Tina K G, Bhadra R, Srinivasan N (2007). PIC. Nucleic Acids Res, 35 (Web Server issue): W473–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Unsworth L D, van der Oost J, Koutsopoulos S (2007). Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J, 274(16): 4044–4056

    Article  CAS  PubMed  Google Scholar 

  • van Pouderoyen G, Eggert T, Jaeger K E, Dijkstra B W (2001). The crystal structure of Bacillus subtilis lipase: a minimal a/ß hydrolase fold enzyme. J Mol Biol, 309(1): 215–226

    Article  PubMed  Google Scholar 

  • Vogt G, Argos P (1997). Protein thermal stability: hydrogen bonds or internal packing? Fold Des, 2(4): S40–S46

    Article  CAS  PubMed  Google Scholar 

  • Zeikus J G, Vieille C, Savchenko A (1998). Thermozymes: biotechnology and structure-function relationships. Extremophiles, 2(3): 179–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, B., Meshachpaul, D., Sethumadhavan, R. et al. Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach. Front. Biol. 10, 508–519 (2015). https://doi.org/10.1007/s11515-015-1379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-015-1379-6

Keywords

Navigation