Skip to main content
Log in

Molecular Lipophilicity Potential, a tool in 3D QSAR: Method and applications

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new method is presented to calculate the Molecular Lipophilicity Potential (MLP). The method is validated by showing that the MLP thus generated on the solvent-accessible surface can be used to back-calculate log P. Because the MLP is shown to be sensitive to conformational effects, the MLP/log P relation is best sought by taking all conformers into account. The MLP method presented here can be used as a third field in CoMFA studies, as illustrated with two series of α1 ligands. In the first series, the steric, electrostatic and lipophilic fields are highly intercorrelated, and taken separately yield comparable models. In the second series of ligands, the best model is obtained with the lipophilic field alone, allowing insights into ligand-receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van de Waterbeemd H. and Testa B., In Testa B. (Ed.) Advances in Drug Research, Vol. 16, Academic Press, London, 1987, pp. 87–227.

    Google Scholar 

  2. Testa B. and Seiler P., Arzneim.-Forsch. Drug Res., 31 (1981) 1053.

    Google Scholar 

  3. El Tayar N., Testa B. and Carrupt P.-A., J. Phys. Chem., 96 (1992) 1455.

    Google Scholar 

  4. Tsai, R.-S., Testa, B., El Tayar, N. and Carrupt, P.-A., J. Chem. Soc., Perkin Trans. II, (1991) 1797.

  5. Audry E., Dallet P., Langlois M.H., Colleter J.C. and Dubost J.P., Prog. Clin. Biol. Res., 291 (1989) 63.

    Google Scholar 

  6. Fauchère J.L., Quarendon P. and Kaetterer L., J. Mol. Graphics, 6 (1988) 203.

    Google Scholar 

  7. Furet P., Sele A. and Cohen N.C., J. Mol. Graphics, 6 (1988) 182.

    Google Scholar 

  8. Kellogg G.E., Semus S.F. and Abraham D.J., J. Comput.-Aided Mol. Design, 5 (1991) 545.

    Google Scholar 

  9. SYBYL 5.41, 5.55, 6.0, Tripos Associates, St. Louis, MO, 1993.

  10. Broto P., Moreau G. and Vandycke C., Eur. J. Med. Chem., 19 (1984) 61.

    Google Scholar 

  11. Ghose A.K. and Crippen G.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  12. Kantola A., Villar H.O. and Loew G.H., J. Comput. Chem., 12 (1991) 681.

    Google Scholar 

  13. Audry E., Dubost J.P., Colleter J.C. and Dallet P., Eur. J. Med. Chem., 21 (1986) 71.

    Google Scholar 

  14. Rekker R.F. and De Kort H.M., Eur. J. Med. Chem., 14 (1979) 479.

    Google Scholar 

  15. Hansch C. and Leo A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, NY, 1979, p. 352.

    Google Scholar 

  16. Kim K.H., Quant. Struct.-Act. Relatsh., 11 (1992) 309.

    Google Scholar 

  17. Croizet F., Dubost J.P., Langlois M.H. and Audry E., Quant. Struct.-Act. Relatsh., 10 (1991) 211.

    Google Scholar 

  18. Hirono S., Liu Q. and Moriguchi I., Chem. Pharm. Bull., 39 (1991) 3106.

    Google Scholar 

  19. Camilleri, P., Watts, S.A. and Boraston, J.A., J. Chem. Soc., Perkin Trans. II, (1988) 1699.

  20. CramerIII R.D., Patterson D.E. and Bunce J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  21. MEDCHEM Software 3.54, Daylight Chemical Information System, Inc., Irvine, CA, 1989.

  22. Fujita T. and Nishioka T., Prog. Phys. Org. Chem., 12 (1976) 49.

    Google Scholar 

  23. Tsantili-Kakoulidou A., El Tayar N., Van de Waterbeemd H. and Testa B., J. Chromatogr., 389 (1987) 33.

    Google Scholar 

  24. Gaillard, P., Carrupt, P.-A., Testa, B. and Tsai, R.-S., manuscript in preparation.

  25. Hudson B.D., George A.R., Ford M.G. and Livingstone D.J., J. Comput.-Aided Mol. Design, 5 (1992) 191.

    Google Scholar 

  26. Singh P. and Sharma R.C., Quant. Struct.-Act. Relatsh., 9 (1990) 29.

    Google Scholar 

  27. Timmermans P.B.M.W.M., De Jonge A., Thoolen M.J.M.C., Wilffert B., Batink H. and Van Zwieten P.A., J. Med. Chem., 27 (1984) 495.

    Google Scholar 

  28. Gasteiger J. and Marsili M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  29. Heiden W., Moeckel G. and Brickmann J., J. Comput.-Aided Mol. Design, 7 (1993) 503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, P., Carrupt, PA., Testa, B. et al. Molecular Lipophilicity Potential, a tool in 3D QSAR: Method and applications. J Computer-Aided Mol Des 8, 83–96 (1994). https://doi.org/10.1007/BF00119860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119860

Key words

Navigation