Skip to main content
Log in

Soybean Hull Insoluble Polysaccharides: Improvements of Its Physicochemical Properties Through High Pressure Homogenization

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Soybean hull is an agroindustrial waste which has not been fully studied as a food ingredient. The aims of this work were to obtain insoluble fibers from soybean hull and to evaluate the effect of high pressure homogenization (HPH) on its physicochemical properties. Hull insoluble polysaccharides (HIPS) were obtained in a single step, as the insoluble residue after pectin removal. FTIR showed bands corresponding to cellulose and hemicellulose in HIPS, and thermogravimetric analysis showed two degradation events at 236.3 °C and 325.6 °C, corresponding to cellulose and hemicellulose, respectively. HIPS dispersions (pH 3.00) were subjected to HPH by three cycles at increasing pressures (up to 1000 bar), obtaining soybean hull nanofibers. SEM images show that HPH at 1000 bar reduced the dimensions of the fiber bundle from 30 to 90 μm in length and 9–15 μm in diameter to nanofibers of 10–30 μm in length and 100–400 nm in diameter. AFM further confirms a heterogeneous distribution of sizes in HIPS800 and HIPS1000, evidencing the presence of individual nanofibers with diameters around 50 ± 10 nm and 40 ± 10 nm, respectively, with several μm in length. Furthermore, an increase in water holding capacity from 2.1 to 61 gwater/gdry matter and viscosity from 0.39 to 34,945 Pa.s were achieved as HPH at 1000 bar treatment was applied. HPH increased the interfacial area and promoted the interconnection of fibers in a hydrated gel-like structure. This explains flow behavior, which was extensively studied in this work: three-region viscosity profile (shear-thinning, plateau or shear-thickening and shear-thinning) and a pronounced hysteresis loop. Oscillatory rheology was used to study the viscoelastic behavior of HIPS dispersions. HIPS are a source of nanofibers, easy to obtain through a single step of chemical treatment followed by the application of high pressures. It is remarkable that the use of few chemical solvents is favorable from an environmental point of view. This work also suggests a potential application of HIPS to improve physicochemical and structural properties in acidic foods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HIPS:

soybean hull insoluble polysaccharides

HF:

soybean hull flour

HPH:

high pressure homogenization

PSD:

particle size distribution

References

  1. USDA, 2018. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  2. R. Gnanasambandam, A. Proctor, Food Chem. 65, 461–467 (1999)

    Article  CAS  Google Scholar 

  3. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia Food Chem. 124, 411–421 (2011)

    Article  CAS  Google Scholar 

  4. Q. Li, A. Al Loman, A.M. Coffman, L.K. Ju, J. Biotechnol. 248, 35–42 (2017)

    Article  CAS  Google Scholar 

  5. H.M. Liu, F.Y. Wang, Y.L. Liu, Food Chem. 202, 104–109 (2016)

    Article  CAS  Google Scholar 

  6. Y. F. M. Kishk, H. M. A. Al-Sayed, LWT Food Sci. Technol., 40, 270–277 (2007)

  7. R. M. Raybaudi-Massilia, J. Mosqueda-Melgar, in: The Complex World of Polysaccharides, ed By In Tech (Croatia 2012), p 429–454

  8. A. Alemdar, M. Sain, Bioresour. Technol. 99(6), 1664–1671 (2008)

    Article  CAS  Google Scholar 

  9. J. Chen, D. Gao, L. Yang, Food Res. Int. 54, 1821–1827 (2013)

    Article  CAS  Google Scholar 

  10. L. Cheng-mei, L. Rui-hong, D. Tao-tao, Y. Jiang-ping, Z. Zi-cong, L. Shun-jing, C. Jun, Food Hydrocoll. 57, 55–61 (2016)

    Article  Google Scholar 

  11. O. Ketenoglu, B. Mert, A. Tekin, J. Texture Stud., 45(4), 295–306 (2014)

  12. G.O. Aspinall, J.N.C. Whyte, J. Chem. Soc. (972), 1964–5058 (1964)

  13. G.O. Aspinall, K. Hunt, M.I. Morrison, J. Chem. Society (C), 1966–1945 (1966)

  14. G.O. Aspinall, K. Hunt, I.M. Morrison, J. Chem. Soc. (C), 1967–1080 (1967)

  15. A. Ferrer, C. Salas, O.J. Rojas, Ind. Crop. Prod. 84, 337–343 (2016)

    Article  CAS  Google Scholar 

  16. W.J. Mullin, W. Xu, Food Res. Int. 33, 883–891 (2000)

    Article  CAS  Google Scholar 

  17. W.J. Mullin, W. Xu, J. Agric. Food Chem. 49, 5331–5335 (2001)

    Article  CAS  Google Scholar 

  18. M.C. Porfiri, J.R. Wagner, Food Hydrocoll. 79, 40–47 (2018)

    Article  CAS  Google Scholar 

  19. D.M. Cabezas, M. Pereira Ortiz, J.R. Wagner, M.C. Porfiri, Food Res. Int. 97, 62–70 (2017)

    Article  CAS  Google Scholar 

  20. U. Kalapathy, A. Proctor, Food Chem. 73, 393–396 (2001)

    Article  CAS  Google Scholar 

  21. M.C. Porfiri, D.M. Cabezas, J.R. Wagner, J. Food Sci. Technol. Association of Food Scientists & Technologists 53(2), 956–967 (2016)

    Article  CAS  Google Scholar 

  22. I. Morrison, Phytochemistry 27, 1097–1100 (1988)

    Article  CAS  Google Scholar 

  23. TAPPI Standard methods. TAPPI Standard T 203 om-09. www.tappi.org

  24. TAPPI Standard methods. TAPPI Standard T 222 om-11. www.tappi.org

  25. B.L. Browning, Methods of Wood Chemistry, vol II. Cap. 19 B- Método 3b (Wiley, New York, 1967)

    Google Scholar 

  26. C. Nkonge, G.M. Ballance, J. Agric. Food Chem. 30(3), 416–420 (1982)

    Article  CAS  Google Scholar 

  27. M. Abramoff, P. Magalhaes, S. Ram, Biophoton. Int. 11, 36–42 (2004)

    Google Scholar 

  28. C.J. Chirayil, L. Mathew, S. Thomas, Rev. Adv. Mater. Sci. 37, 20–28 (2014)

    CAS  Google Scholar 

  29. F.Y. Wang, H.Y. Li, H.M. Liu, Y.L. Liu, Bioresoueces 10(3), 5256–5266 (2015)

    CAS  Google Scholar 

  30. R. Sepe, F. Bollino, L. Boccarusso, F. Caputo, Compos. Part B 133, 210–217 (2018)

    Article  CAS  Google Scholar 

  31. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Sci. Direct Fuel 86, 1781–1788 (2007)

    CAS  Google Scholar 

  32. M. Poletto, A.J. Zattera, R.M.C. Santana, J. Appl. Polym. Sci. 126, E336–E343 (2012)

    Article  Google Scholar 

  33. D. Dai, M. Fan, Vib. Spectrosc. 55, 300–306 (2011)

    Article  CAS  Google Scholar 

  34. I.H. Parvez, S. Feride, J. Mol. Catal. B Enzym. 7, 207–221 (1999)

    Article  Google Scholar 

  35. P.L.M. Barreto, A.T.N. Pires, V. Soldi, Polym. Degrad. Stab. 79, 147–152 (2003)

    Article  CAS  Google Scholar 

  36. L. Burhenne, J. Messmer, T. Aicher, M.P. Laborie, J. Anal. Appl. Pyrolysis 101, 177–184 (2013)

    Article  CAS  Google Scholar 

  37. H.S. Kim, S. Kim, H.J. Kim, H.S. Yang, Thermochim. Acta 451(1–2), 181–188 (2006)

    Article  CAS  Google Scholar 

  38. A. Clarke, T. Prescott, A. Khan, A.G. Olabi, Appl. Energy 87, 3680–3690 (2010)

    Article  CAS  Google Scholar 

  39. D.J. Mc Clements, Food Emulsions: Principles, Practice and Techniques (CRC Press, Boca Raton, 1999)

    Google Scholar 

  40. J. Ahmed, S. Al-Jassar, L. Thomas, Food Hydrocoll. 48, 72–83 (2015)

    Article  CAS  Google Scholar 

  41. R. Lapasin, S. Pricl, Rheology of Industrial Polysaccharides: Theory and Applications (Blackie Academic & Professional, Glasgow, 1995)

    Book  Google Scholar 

  42. M. Iotti, O.W. Gregersen, S. Moe, M. Lenes, J. Polym. Environ. 19, 137–145 (2011)

    Article  CAS  Google Scholar 

  43. U. Florjancic, A. Zupancic, M. Zumer, Chem. Biochem. Eng. Q. 16(3), 105–118 (2002)

    CAS  Google Scholar 

  44. H.Y. Yu, L. Wang, K.L. McCarthy, J. Food Drug Anal. 24, 804–812 (2016)

    Article  CAS  Google Scholar 

  45. J.A. Teggatz, H.A. Morris, Food Struct. 9, 133–138 (1990)

    Google Scholar 

  46. X. Jia, Y. Chen, C. Shi, Y. Ye, M. Abid, S. Jabbar, P. Wang, X. Zeng, T. Wua, Food Hydrocoll. 39, 27–33 (2014)

    Article  CAS  Google Scholar 

  47. M.P. Lowys, J. Desbrières, M. Rinaudo, Food Hydrocoll. 15, 25–32 (2001)

    Article  CAS  Google Scholar 

  48. A. Karppinen, T. Saarinen, J. Salmela, A. Laukkanen, M. Nuopponen, J. Seppala, Cellulose 19, 1807–1819 (2012)

    Article  CAS  Google Scholar 

  49. E. Saarikoski, T. Saarinen, J. Salmela, J. Seppala, Cellulose 19, 647–659 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Terminal 6 S. A. (Santa Fe, Argentina) for kindly providing us with soybean hulls. AFM was carried out in INIFTA-CONICET, UNLP, Argentina.

Funding

This study was funded by Universidad Nacional de Quilmes (R&D Grant PUNQ 53/1037); and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-0084; PICT 2017–1540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Porfiri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colletti, A.C., Delgado, J.F., Cabezas, D.M. et al. Soybean Hull Insoluble Polysaccharides: Improvements of Its Physicochemical Properties Through High Pressure Homogenization. Food Biophysics 15, 173–187 (2020). https://doi.org/10.1007/s11483-019-09613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09613-y

Keywords

Navigation