Skip to main content

Advertisement

Log in

Green processing of sour cherry (Prunus cerasus L.) pomace: process optimization for the modification of dietary fibers and property measurements

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Commercial processing of sour cherries generates a large quantity of pomace as an industrial waste, which can suitably be converted into value-added fiber-rich products by employing appropriate extraction techniques. In this work, an array of techniques [microwave (MW), high-pressure (HP), enzymatic and thermal treatments] was employed to improve the yield of soluble dietary fiber (SDF) in sour cherry pomace (SCP) by breaking down the insoluble dietary fiber into a soluble form, and characterizes by total phenolic content, antioxidant capacity and other property measurements. It was found that a combination of MW (850 W/60 s) and HP treatment (600 MPa/15 min) resulted in the maximum yield of SDF (63%). However, individually the MW-heating (44.6%) had an edge on extraction over the HP-treatment (21.9%). Micrographs of MW-HP-600 treated samples exhibited an array of disordered smaller particle fragments spread over the larger particles. HP treatment improved the water holding capacity from 10.12 to 11.76 g/g after 600 MPa treatment. The peak values of the solubility index (46.9 to 49.6%) achieved in the sample containing elevated SDF content (the combination of either MW and HP, or MW, EH, and HP). The optimized process produced the maximum total phenolic (5.39 mg GAE/g d.b.) and DPPH (9.94 mmol DPPH˙/100 g d.b.) contents in the treated pomace. The combination of microwave, enzymatic hydrolysis and high-pressure treatments can loosen the surface structure of SCP-DF, enhance hydration properties by exposing hydrophilic groups more, extract a higher amount of phenolic compounds providing antioxidant activity improvement besides increasing SDF ratio in SCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. FAOSTAT. FAO statistical database (2018), http://www.fao.org/faostat/en/#data/QC. Accessed 10 Sept 2019

  2. C. Madeddu, M.C. Roda-Serrat, K.V. Christensen, R.B. El-Houri, M. Errico, A biocascade approach towards the recovery of high-value natural products from biowaste: state-of-art and future trends. Waste Biomass Valoriz. 12, 1143 (2020)

    Article  Google Scholar 

  3. J. Gonçalves, R. Ramos, T. Rosado, E. Gallardo, A.P. Duarte, Development and validation of a HPLC–DAD method for quantification of phenolic compounds in different sweet cherry cultivars. SN Appl. Sci. 1(9), 954 (2019)

    Article  Google Scholar 

  4. K. Kołodziejczyk, M. Sójka, M. Abadias, I. Viñas, S. Guyot, A. Baron, Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crops Prod. 51, 279–288 (2013)

    Article  Google Scholar 

  5. G. Domínguez-Rodríguez, M.L. Marina, M. Plaza, Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus Avium L.) pomace. Food Chem. 339, 128086 (2020)

    Article  Google Scholar 

  6. P. Górnaś, K. Juhņeviča-Radenkova, V. Radenkovs, I. Mišina, I. Pugajeva, A. Soliven, D. Segliņa, The impact of different baking conditions on the stability of the extractable polyphenols in muffins enriched by strawberry, sour cherry, raspberry or black currant pomace. LWT Food Sci. Technol. 65, 946–953 (2016). https://doi.org/10.1016/j.lwt.2015.09.029

    Article  CAS  Google Scholar 

  7. S. Hosseini, K. Parastouei, F. Khodaiyan, Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int. J. Biol. Macromol. 158, 911 (2020)

    Article  CAS  Google Scholar 

  8. F. Saura-Calixto, J. Pérez-Jiménez, I. Goni, Dietary fiber and associated antioxidants in fruit and vegetables. Fruit Veg. Phytochem. (2010). https://doi.org/10.1002/9780813809397.ch8

    Article  Google Scholar 

  9. R.K. Toivonen, R. Emani, E. Munukka, A. Rintala, A. Laiho, S. Pietilä, E. Eerola, Fermentable fibres condition colon microbiota and promote diabetogenesis in NOD mice. Diabetologia 57(10), 2183–2192 (2014)

    Article  CAS  Google Scholar 

  10. K. Weitkunat, S. Schumann, K.J. Petzke, M. Blaut, G. Loh, S. Klaus, Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J. Nutr. Biochem. 26(9), 929–937 (2015)

    Article  CAS  Google Scholar 

  11. G. Zhao, R. Zhang, L. Dong, F. Huang, X. Tang, Z. Wei, M. Zhang, Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT 87, 450–456 (2018)

    Article  CAS  Google Scholar 

  12. M. Periago, G. Ros, G. López, M. Martínez, F. Ricon, Dietary fiber components and their physiological effects. Rev. Esp. de Ciencia y Tecnol. de Alimentos (Espana) 33, 229 (1993)

  13. F. Guillon, M. Champ, Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 33(3–4), 233–245 (2000)

    Article  Google Scholar 

  14. S. Wang, R.J. Kowalski, Y. Kang, A.M. Kiszonas, M.-J. Zhu, G.M. Ganjyal, Impacts of the particle sizes and levels of inclusions of cherry pomace on the physical and structural properties of direct expanded corn starch. Food Bioprocess. Technol. 10(2), 394–406 (2016). https://doi.org/10.1007/s11947-016-1824-9

    Article  CAS  Google Scholar 

  15. İ Okur, C. Baltacıoğlu, E. Ağçam, H. Baltacıoğlu, H. Alpas, Evaluation of the effect of different extraction techniques on sour cherry pomace phenolic content and antioxidant activity and determination of phenolic compounds by FTIR and HPLC. Waste Biomass Valoriz. 10(12), 3545–3555 (2019). https://doi.org/10.1007/s12649-019-00771-1

    Article  CAS  Google Scholar 

  16. I. Mateos-Aparicio, C. Mateos-Peinado, P. Rupérez, High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. Technol. 11(3), 445–450 (2010). https://doi.org/10.1016/j.ifset.2010.02.003

    Article  CAS  Google Scholar 

  17. Y. Zheng, Y. Li, Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem. 257, 135–142 (2018). https://doi.org/10.1016/j.foodchem.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  18. J. Gan, Z. Huang, Q. Yu, G. Peng, Y. Chen, J. Xie, M. Xie, Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids 101, 105549 (2020). https://doi.org/10.1016/j.foodhyd.2019.105549

    Article  CAS  Google Scholar 

  19. D. Lin, X. Long, Y. Huang, Y. Yang, Z. Wu, H. Chen, Z. Tu, Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT 123, 109059 (2020). https://doi.org/10.1016/j.lwt.2020.109059

    Article  CAS  Google Scholar 

  20. L. Wen, Z. Zhang, M. Zhao, R. Senthamaraikannan, R.B. Padamati, D.W. Sun, B.K. Tiwari, Green extraction of soluble dietary fibre from coffee silverskin: impact of ultrasound/microwave-assisted extraction. Int. J. Food Sci. Technol. 55(5), 2242–2250 (2020). https://doi.org/10.1111/ijfs.14477

    Article  CAS  Google Scholar 

  21. V. Tejada-Ortigoza, L.E. Garcia-Amezquita, S.O. Serna-Saldívar, J. Welti-Chanes, Advances in the functional characterization and extraction processes of dietary fiber. Food Eng. Rev. 8(3), 251–271 (2015). https://doi.org/10.1007/s12393-015-9134-y

    Article  CAS  Google Scholar 

  22. M. Tapia-Salazar, I.G. Arévalo-Rivera, M. Maldonado-Muñiz, L.E. Garcia-Amezquita, M.G. Nieto-López, D. Ricque-Marie, J. Welti-Chanes, The dietary fiber profile, total polyphenol content, functionality of silvetia compressa and ecklonia arborea, and modifications induced by high hydrostatic pressure treatments. Food Bioprocess. Technol. 12(3), 512–523 (2019). https://doi.org/10.1007/s11947-018-2229-8

    Article  CAS  Google Scholar 

  23. L. Elizondo-Montemayor, P.A. Ramos-Parra, D.A. Jacobo-Velázquez, N. Treviño-Saldaña, L.M. Marín-Obispo, I.P. Ibarra-Garza, C. Hernández-Brenes, High hydrostatic pressure stabilized micronutrients and shifted dietary fibers, from insoluble to soluble, producing a low-glycemic index mango pulp. CyTA J. Food 18(1), 203–215 (2020). https://doi.org/10.1080/19476337.2020.1731610

    Article  CAS  Google Scholar 

  24. J. Ahmed, M. Mulla, N. Al-Ruwaih, Y. Arfat, Effect of high-pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Sci. 1(1), e10 (2019)

  25. AOAC, Association of Official Analytical Chemists. Official Methods of Analysis (AOAC, Arlington, VA, 1990).

    Google Scholar 

  26. S.C. Lee, L. Prosky, Dietary fiber analysis. Cereal Foods World 37, 765 (1992)

    CAS  Google Scholar 

  27. J. Ahmed, H. Al-Attar, Effect of drying method on rheological, thermal, and structural properties of chestnut flour doughs. Food Hydrocolloids 51, 76–87 (2015)

    Article  CAS  Google Scholar 

  28. B. Cilek Tatar, G. Sumnu, M. Oztop, Microcapsule characterization of phenolic powder obtained from strawberry pomace. J. Food Process. Preserv. 43(6), e13892 (2019). https://doi.org/10.1111/jfpp.13892

    Article  CAS  Google Scholar 

  29. K. Wang, M. Li, Y. Wang, Z. Liu, Y. Ni, Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids 110, 106162 (2021)

    Article  CAS  Google Scholar 

  30. L. Yan, T. Li, C. Liu, L. Zheng, Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre. LWT 107, 171–177 (2019)

    Article  CAS  Google Scholar 

  31. D.L. Gil-López, J. Lois-Correa, M. Sánchez-Pardo, M. Domínguez-Crespo, A. Torres-Huerta, A. Rodríguez-Salazar, V. Orta-Guzmán, Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments. Ind. Crops Prod. 135, 159–169 (2019)

    Article  Google Scholar 

  32. A. Kokorevics, J. Gravitis, Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment. Glycoconjug. J. 14(5), 669–676 (1997)

    Article  CAS  Google Scholar 

  33. V. Tejada-Ortigoza, L.E. Garcia-Amezquita, S.O. Serna-Saldívar, O. Martín-Belloso, J. Welti-Chanes, High hydrostatic pressure and mild heat treatments for the modification of orange peel dietary fiber: effects on hygroscopic properties and functionality. Food Bioprocess Technol. 11(1), 110–121 (2017). https://doi.org/10.1007/s11947-017-1998-9

    Article  CAS  Google Scholar 

  34. X. Huang, K. Liang, Q. Liu, J. Qiu, J. Wang, H. Zhu, Superfine grinding affects physicochemical, thermal and structural properties of Moringa Oleifera leaf powders. Ind. Crops Prod. 151, 112472 (2020)

    Article  CAS  Google Scholar 

  35. S. Karra, H. Sebii, H. Yaich, M.A. Bouaziz, C. Blecker, S. Danthine, S. Besbes, Effect of extraction methods on the physicochemical, structural, functional, and antioxidant properties of the dietary fiber concentrates from male date palm flowers. J. Food Biochem. (2020). https://doi.org/10.1111/jfbc.13202

    Article  PubMed  Google Scholar 

  36. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124(2), 411–4215 (2011)

    Article  CAS  Google Scholar 

  37. N.N. Boulos, H. Greenfield, R.B.H. Wills, Water holding capacity of selected soluble and insoluble dietary fibre. Int. J. Food Prop. 3(2), 217–231 (2000). https://doi.org/10.1080/10942910009524629

    Article  CAS  Google Scholar 

  38. G. Yu, J. Bei, J. Zhao, Q. Li, C. Cheng, Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 257, 333–340 (2018). https://doi.org/10.1016/j.foodchem.2018.03.037

    Article  CAS  PubMed  Google Scholar 

  39. J.A. Robertson, F.D. de Monredon, P. Dysseler, F. Guillon, R. Amado, J.-F. Thibault, Hydration properties of dietary fibre and resistant starch: a European Collaborative Study. LWT Food Sci. Technol. 33(2), 72–79 (2000). https://doi.org/10.1006/fstl.1999.0595

    Article  CAS  Google Scholar 

  40. E. Pérez-López, I. Mateos-Aparicio, P. Rupérez, Low molecular weight carbohydrates released from Okara by enzymatic treatment under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 38, 76–82 (2016). https://doi.org/10.1016/j.ifset.2016.09.014

    Article  CAS  Google Scholar 

  41. F. Xie, T. Zhao, H. Wan, M. Li, L. Sun, Z. Wang, S. Zhang, Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization. Appl. Sci. 9(7), 1270 (2019). https://doi.org/10.3390/app9071270

    Article  CAS  Google Scholar 

  42. D. Bonerz, K. Würth, H. Dietrich, F. Will, Analytical characterization and the impact of ageing on anthocyanin composition and degradation in juices from five sour cherry cultivars. Eur. Food Res. Technol. 224(3), 355–364 (2006). https://doi.org/10.1007/s00217-006-0328-7

    Article  CAS  Google Scholar 

  43. M. Simsek, G. Sumnu, S. Sahin, Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47(8), 1248–1254 (2012). https://doi.org/10.1080/01496395.2011.644616

    Article  CAS  Google Scholar 

  44. İH. Adil, M.E. Yener, A. Bayındırlı, Extraction of total phenolics of sour cherry pomace by high pressure solvent and subcritical fluid and determination of the antioxidant activities of the extracts. Sep. Sci. Technol. 43(5), 1091–1110 (2008). https://doi.org/10.1080/01496390801888243

    Article  CAS  Google Scholar 

  45. B.L. Halvorsen, K. Holte, M.C. Myhrstad, I. Barikmo, E. Hvattum, S.F. Remberg, L.F. .. Andersen, A systematic screening of total antioxidants in dietary plants. J. Nutr. 132(3), 461–471 (2002)

    Article  CAS  Google Scholar 

  46. T.G. Albuquerque, F. Santos, A. Sanches-Silva, M.B. Oliveira, A.C. Bento, H.S. Costa, Nutritional and phytochemical composition of Annona cherimola Mill. fruits and by-products: Potential health benefits. Food Chem. 193, 187–195 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was funded by Middle East Technical University, Turkey (DKT-314-2018-3589). The authors would like to express sincere gratitude to the Scientific and Technological Research Council of Turkey for financial support (TUBITAK-2214 A/1059B141800169) and the Kuwait Institute for Scientific Research for conducting the research. We would like to thank ANKOM Technology and Orba Biochemistry Inc. for providing the filter bags and cellulase, respectively.

Author information

Authors and Affiliations

Authors

Contributions

DBS: Conceptualization, Investigation, Formal analysis, Writing—original draft. JA: Supervision, Statistical analysis, Writing—review & editing. GS: Conceptualization, Project administration, Supervision, Writing—review & editing. SS: Project administration, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Jasim Ahmed.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezer, D.B., Ahmed, J., Sumnu, G. et al. Green processing of sour cherry (Prunus cerasus L.) pomace: process optimization for the modification of dietary fibers and property measurements. Food Measure 15, 3015–3025 (2021). https://doi.org/10.1007/s11694-021-00883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00883-0

Keywords

Navigation