Skip to main content
Log in

Nisin Adsorption in Colloidal Systems Formed with Phytoglycogen Octenyl Succinate

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

While antimicrobial compounds are often used against food pathogens, they are liable to quick degradations in foods. One way to achieve their sustained efficacy is through the use of protective delivery systems. The overall goal of this study was to understand the interactions between nisin, an antimicrobial peptide, and phytoglycogen octenyl succinate (PG-OS), a dendrimer-like amphiphilic carbohydrate polymer in aqueous (non-emulsion) and emulsion based colloidal systems. Nisin interacts with PG-OS particulates following a Langmuir monolayer adsorption pattern in both systems. The monolayer adsorption capacity (Qm) ranged from 37.6 to 106.4 μg/mL in non-emulsion, and was 181.8 μg/mL in PG-OS stabilized emulsion. At the same doses of PG-OS (5.0 mg/mL) and nisin (200 μg/mL), the concentration of adsorbed nisin in emulsion and non-emulsion were 157 and 22 μg/mL, respectively. This study showed that both the chemical nature and physical distribution of PG-OS particulates would affect nisin adsorption, which may provide a method for designing carbohydrate colloidal systems to achieve effective protection of antimicrobial compounds for foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Farkas, Int J Food Microbiol 44(3), 189–204 (1998)

    Article  CAS  Google Scholar 

  2. I. Oey, M. Lille, A. Van Loey, M. Hendrickx, Trends Food Sci Technol 19(6), 320–328 (2008)

    Article  CAS  Google Scholar 

  3. B. K. Tiwari, V. P. Valdramidis, C. P. O.’. Donnell, K. Muthukumarappan, P. Bourke, P. J. Cullen, J Agric Food Chem 57(14), 5987–6000 (2009)

    Article  CAS  Google Scholar 

  4. L. J. de Arauz, A. F. Jozala, P. G. Mazzola, T. C. V. Penna, Trends Food Sci Technol 20(3–4), 146–154 (2009)

    Article  Google Scholar 

  5. B. B. Bonev, W. C. Chan, B. W. Bycroft, G. C. Roberts, A. Watts, Biochem. 39(37), 11425–11433 (2000)

    Article  CAS  Google Scholar 

  6. E. Breukink, P. Ganz, B. de Kruijff, J. Seelig, Biochem 39(33), 10247–10254 (2000)

    Article  CAS  Google Scholar 

  7. W. Liu, J. N. Hansen, Appl Environ Microbiol 56(8), 2551–2558 (1990)

    CAS  Google Scholar 

  8. E. Breukink, B. de Kruijff, Nat Rev Drug Discov 5(4), 321–332 (2006)

    Article  CAS  Google Scholar 

  9. M. Bhatti, A. Veeramachaneni, L. A. Shelef, Int J Food Microbiol 97(2), 215–219 (2004)

    Article  CAS  Google Scholar 

  10. D. S. Jung, F. W. Bodyfelt, M. A. Daeschel, J Dairy Sci 75(2), 387–393 (1992)

    Article  CAS  Google Scholar 

  11. M. Mahadeo, S. R. Tatini, Lett Appl Microbiol 18(6), 323–326 (1994)

    Article  CAS  Google Scholar 

  12. N. L. Rose, P. Sporns, M. E. Stiles, L. M. McMullen, J Food Sci 64(5), 759–762 (1999)

    Article  CAS  Google Scholar 

  13. D. Ercolini, I. Ferrocino, A. La Storia, et al., Food Microbiol 27(1), 137–143 (2010)

    Article  CAS  Google Scholar 

  14. T. Jin, L. S. Liu, H. Zhang, K. Hicks, Int J Food Sci Technol 44(2), 322–329 (2009)

    Article  CAS  Google Scholar 

  15. S. E. Schmidt, G. Holub, J. M. Sturino, T. M. Taylor, Probiotics Antimicrob Proteins 1(2), 152–158 (2009)

    Article  Google Scholar 

  16. T. M. Taylor, S. Gaysinsky, P. M. Davidson, B. Bruce, J. Weiss, Food Biotechnol 2(1), 1–9 (2007)

    Google Scholar 

  17. M. Zohri, M. Shafiee Alavidjeh, S. S. Mirdamadi, et al., J Food Saf 33(1), 40–49 (2013)

    Article  Google Scholar 

  18. Y. Zou, h. Y. Lee, Y. C. Seo, J. Ahn, J Food Sci 77(3), M165–M170 (2012)

    Article  CAS  Google Scholar 

  19. P. Prombutara, Y. Kulwatthanasal, N. Supaka, I. Sramala, S. Chareonpornwattana, Food Control 24(1–2), 184–190 (2012)

    Article  CAS  Google Scholar 

  20. L. Bi, L. Yang, A. K. Bhunia, Y. Yao, Biotechnol Bioeng 108(7), 1529–1536 (2011)

    Article  CAS  Google Scholar 

  21. L. Bi, L. Yang, G. Narsimhan, A. K. Bhunia, Y. Yao, J. Control, Religion 150(2), 150–156 (2011)

    CAS  Google Scholar 

  22. M. G. James, D. S. Robertson, A. M. Myers, Plant Cell 7, 417–429 (1995)

    Article  CAS  Google Scholar 

  23. L. Huang, Y. Yao, Carbohydr Polym 83(4), 1665–1671 (2011)

    Article  CAS  Google Scholar 

  24. S. L. Scheffler, X. Wang, L. Huang, F. San-Martin Gonzalez, Y. Yao, J. Agri, Food Chem 58(1), 660–667 (2009)

    Article  Google Scholar 

  25. S. L. Scheffler, L. Huang, L. Bi, Y. Yao, J. Agri, Food Chem 58(8), 5140–5146 (2010)

    Article  CAS  Google Scholar 

  26. K. Y. Foo, B. H. Hameed, Chem Eng J 156(1), 2–10 (2010)

    Article  CAS  Google Scholar 

  27. J. L. Putaux, A. Buleon, R. Borsali, H. Chanzy, Int J Biol Macromol 26(2–3), 145–150 (1999)

    Article  CAS  Google Scholar 

  28. I. Langmuir, J. Am, Chem Soc 38(11), 2221–2295 (1916)

    Article  CAS  Google Scholar 

  29. T. Krivorotova, A. Cirkovas, S. Maciulyte, R. Staneviciene, S. Budriene, E. Serviene, J. Sereikaite, Food Hydrocoll 54, 49–56 (2016)

    Article  CAS  Google Scholar 

  30. L. Bi, L. Yang, A. K. Bhunia, Y. Yao, LWT Food Sci Technol 70, 245–251 (2016)

    Article  CAS  Google Scholar 

  31. Y. Chang, L. McLandsborough, D. J. McClements, J. Agri, Food Chem 60(7), 1837–1844 (2012)

    Article  CAS  Google Scholar 

  32. H. Q. Chen, P. M. Davidson, Q. X. Zhong, Int J Food Microbiol 191, 75–81 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Foundation grant No. 0932586 to Yuan Yao and Arun Bhunia provided the financial support for this study. The authors want to thank Yezhi Fu for his support on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Bhunia, A. & Yao, Y. Nisin Adsorption in Colloidal Systems Formed with Phytoglycogen Octenyl Succinate. Food Biophysics 11, 311–318 (2016). https://doi.org/10.1007/s11483-016-9436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9436-5

Keywords

Navigation