Skip to main content
Log in

Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pectin is an anionic carbohydrate present in many plant-based materials that can interact with positively charged macromolecules, such as proteins, to form electrostatic complexes with promising applications. The aim of this study was to form and characterize whey protein isolate (WPI):high or low methoxylated pectin (HMP or LMP, respectively) electrostatic complexes. Then, the surface activity of the complexes and their capacity to form and stabilize nanoemulsions was assessed. Finally, the impact of the interfacial composition on the antimicrobial killing kinetics of essential oil nanoemulsions against Escherichia coli was evaluated. First, a stronger complexation was observed at pH below 5, where pectin and protein were negatively and positively charged, respectively. Additionally, LMP led to the formation of stronger complexes in comparison to HMP due to the presence of more ionizable carboxylic groups and therefore it was more negatively charged. Second, protein:pectin complexes were more effective than the biopolymers alone in order to form essential oil nanoemulsions, maintaining their oil droplet size stable during at least 30 days. And third, WPI:LMP complex-stabilized antimicrobial nanoemulsions resulted in a slower and lower Escherichia coli killing kinetics in comparison to WPI:HMP complexes, evidencing that the compactness of the interfacial layer determines the interaction with bacterial cells. Hence, the diffusion of the antimicrobial compounds from the lipid core through the interfacial layer and towards bacteria might be modulated by controlling the interfacial composition using WPI:pectin complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aberkane, L., Roudaut, G., & Saurel, R. (2014). Encapsulation and oxidative stability of PUFA-rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology, 1505–1517.

  • Alba, K., & Kontogiorgos, V. (2017). Pectin at the oil-water interface: relationship of molecular composition and structure to functionality. Food Hydrocolloids, 68, 211–218.

    Article  CAS  Google Scholar 

  • Alund, S., Smistad, G., & Hiorth, M. (2013). A multivariate analysis investigating different factors important for the interaction between liposomes and pectin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 420, 1–9. https://doi.org/10.1016/j.colsurfa.2012.11.079.

    Article  CAS  Google Scholar 

  • Artiga-Artigas, M., Acevedo-Fani, A., & Martín-Belloso, O. (2017). Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, 76, 1–12.

    Article  CAS  Google Scholar 

  • Artiga-Artigas, M., Guerra-Rosas, M. I., Morales-Castro, J., Salvia-Trujillo, L., & Martín-Belloso, O. (2018). Influence of essential oils and pectin on nanoemulsion formulation: a ternary phase experimental approach. Food Hydrocolloids, 81, 209–219. https://doi.org/10.1016/j.foodhyd.2018.03.001.

    Article  CAS  Google Scholar 

  • Artiga-Artigas, M., Reichert, C., Salvia-Trujillo, L., Zeeb, B., Martín-Belloso, O., & Weiss, J. (2020). Protein / polysaccharide complexes to stabilize decane-in-water nanoemulsions.

  • Assadpour, E., Maghsoudlou, Y., Jafari, S. M., Ghorbani, M., & Aalami, M. (2016). Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 86, 197–207.

    Article  CAS  Google Scholar 

  • Benoit, S. M., Afizah, M. N., Ruttarattanamongkol, K., & Rizvi, S. S. H. (2013). Effect of pH and temperature on the viscosity of texturized and commercial whey protein dispersions. International Journal of Food Properties, 16(2), 322–330.

    Article  CAS  Google Scholar 

  • Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C., & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9, 1–9.

    Article  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods--a review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  Google Scholar 

  • Chang, Y., McLandsborough, L., & McClements, D. J. (2012). Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. Journal of Agricultural and Food Chemistry, 60(48), 12056–12063.

    Article  CAS  Google Scholar 

  • Chen, B., Li, H., Ding, Y., & Suo, H. (2012). Formation and microstructural characterization of whey protein isolate/beet pectin coacervations by laccase catalyzed cross-linking. LWT - Food Science and Technology, 47(1), 31–38.

    Article  CAS  Google Scholar 

  • Combrinck, J., Otto, A., & du Plessis, J. (2014). Whey protein/polysaccharide-stabilized emulsions: effect of polymer type and pH on release and topical delivery of salicylic acid. AAPS PharmSciTech, 15(3), 588–600.

    Article  CAS  Google Scholar 

  • Cosentino, S., Tuberoso, C. I. G., Pisano, B., Satta, M., Mascia, V., Arzedi, E., & Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 29(2), 130–135.

    Article  CAS  Google Scholar 

  • De Nobili, M. D., & Pérez, C. D. (2013). Hydrolytic stability of L - ( + ) -ascorbic acid in low methoxyl pectin films with potential antioxidant activity at food interfaces. Food and Bioprocess Technology, 186–197.

  • Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25–39.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482.

    Article  CAS  Google Scholar 

  • Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106–120.

    Article  Google Scholar 

  • Donsì, F., Sessa, M., Mediouni, H., Mgaidi, A., & Ferrari, G. (2011). Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Science, 1, 1666–1671. https://doi.org/10.1016/j.profoo.2011.09.246.

    Article  CAS  Google Scholar 

  • Doublier, J. L., Garnier, C., Renard, D., & Sanchez, C. (2000). Protein-polysaccharide interactions. Current Opinion in Colloid and Interface Science, 5(3–4), 202–214.

    Article  CAS  Google Scholar 

  • Fan, Y., Yi, J., Zhang, Y., Wen, Z., & Zhao, L. (2017). Physicochemical stability and in vitro bioaccessibility of β-carotene nanoemulsions stabilized with whey protein-dextran conjugates. Food Hydrocolloids, 63(2017), 256–264.

    Article  CAS  Google Scholar 

  • Ferreira, J. P., Alves, D., Neves, O., Silva, J., Gibbs, P. A., & Teixeira, P. C. (2010). Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control, 21(3), 227–230. https://doi.org/10.1016/j.foodcont.2009.05.018.

    Article  CAS  Google Scholar 

  • Ghosh, A. K., & Bandyopadhyay, P. (2012). Polysaccharide-protein interactions and their relevance in food colloids. The Complex World of Polysaccharides, 395–408.

  • Gomez-Estaca, J., Comunian, T. A., & Montero, P. (2018). Physico-chemical properties , stability , and potential food applications of shrimp lipid extract encapsulated by complex coacervation. Food and Bioprocess Technology, 1596–1604.

  • Guerra-Rosas, M. I., Morales-Castro, J., Ochoa-Martínez, L. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2016). Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 52, 438–446.

    Article  CAS  Google Scholar 

  • Guerra-Rosas, M. I., Morales-Castro, J., Cubero-Márquez, M. A., Salvia-Trujillo, L., & Martín-Belloso, O. (2017). Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 77, 131–138. https://doi.org/10.1016/j.foodcont.2017.02.008.

    Article  CAS  Google Scholar 

  • Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by complex coacervation using whey pia : an approach to preserve throtein isolates and gum Acace functionality and controlled release of β -carotene. Food and Bioprocess Technology, 1635–1644.

  • Kavas, G., & Kavas, N. (2014). The effects of mint (Mentha spicata) essential oil fortified edible films on the physical, chemical and microbiological characteristics of lor cheese. Journal of Food, Agriculture and Environment, 12(3–4), 40–45.

    CAS  Google Scholar 

  • Komaiko, J., & Mcclements, D. (2016). Formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Comprehensive Reviews in Food Science and Food Safety, 15. https://doi.org/10.1111/1541-4337.12189.

  • Liang, R. H., Chen, J., Liu, W., Liu, C. M., Yu, W., Yuan, M., & Zhou, X. Q. (2012). Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydrate Polymers, 87(1), 76–83.

    Article  CAS  Google Scholar 

  • Matalanis, A., Jones, O., & Mcclements, D. (2011). Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids - FOOD HYDROCOLLOID, 25(8), 1865–1880. https://doi.org/10.1016/j.foodhyd.2011.04.014.

    Article  CAS  Google Scholar 

  • Murray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid and Interface Science, 7(5–6), 426–431. https://doi.org/10.1016/S1359-0294(02)00077-8.

    Article  CAS  Google Scholar 

  • Nguyen, S., Alund, S. J., Hiorth, M., Kjøniksen, A. L., & Smistad, G. (2011). Studies on pectin coating of liposomes for drug delivery. Colloids and Surfaces B: Biointerfaces, 88(2), 664–673.

    Article  CAS  Google Scholar 

  • Otoni, C. G., Avena-Bustillos, R. J., Olsen, C. W., Bilbao-Sáinz, C., & McHugh, T. H. (2016). Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. 57, 72–79.

  • Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6. https://doi.org/10.1016/j.cofs.2015.07.008.

    Article  Google Scholar 

  • Peleg, M. (2006). In M. Peleg (Ed.), Advanced quantitative microbiology for foods and biosystems. Models for predicting growth and inactivation. Boca Raton, FL: CRC Press.

  • Pesavento, G., Calonico, C., Bilia, A. R., Barnabei, M., Calesini, F., Addona, R., Mencarelli, L., Carmagnini, L., di Martino, M. C., & Lo Nostro, A. (2015). Antibacterial activity of oregano, rosmarinus and thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control, 54, 188–199.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Avena-Bustillos, R. J., Olsen, C., Friedman, M., Henika, P. R., Martín-Belloso, O., Pan, Z., & McHugh, T. H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 81(3), 634–641.

    Article  Google Scholar 

  • Ryu, V., McClements, D. J., Corradini, M. G., & McLandsborough, L. (2018). Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chemistry, 245(June 2017), 104–111.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Decker, E. A., & McClements, D. J. (2016). Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: antioxidant effects of alginate. Food Hydrocolloids, 52, 690–698.

    Article  CAS  Google Scholar 

  • Surh, J., Decker, E. A., & McClements, D. J. (2006). Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids, 20(5), 607–618.

    Article  CAS  Google Scholar 

  • Tavares, L., Lopes, H., Barros, B., César, J., Vaghetti, P., Pelayo, C., & Noreña, Z. (2019). Microencapsulation of garlic extract by complex coacervation using whey protein isolate / chitosan and gum Arabic / chitosan as wall materials : influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology, 2093–2106.

  • Thakur, B. R., Singh, R. K., & Handa, A. K. (1997). Chemistry and uses of pectin - a review. Critical Reviews in Food Science and Nutrition, 37(1), 47–73.

    Article  CAS  Google Scholar 

  • Verkempinck, S. H. E., Kyomugasho, C., Salvia-trujillo, L., Denis, S., Bourgeois, M., Van Loey, A. M., et al. (2018). Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsi fi ers in oil-in-water emulsions. Food Hydrocolloids, 85(July), 144–157.

    Article  CAS  Google Scholar 

  • Victória, R., Fernandes, D. B., Silva, E. K., Borges, S. V., De Oliveira, C. R., Yoshida, M. I., et al. (2017). Proposing novel encapsulating matrices for spray-dried ginger essential oil from the whey protein isolate-inulin / maltodextrin blends. Food and Bioprocess Technology, 115–130.

  • Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2014). Controlled release of β-carotene in β-lactoglobulin-dextran- conjugated nanoparticles in vitro digestion and transport with caco-2 monolayers. Journal of Agricultural and Food Chemistry, 62(35), 8900–8907.

    Article  CAS  Google Scholar 

  • Yuan, F., Xu, D., Qi, X., & Zhao, J. (2013). Impact of high hydrostatic pressure on the emulsifying properties of whey protein isolate – chitosan mixtures., 6(4), 1024–1031. https://doi.org/10.1007/s11947-011-0745-x.

  • Zeeb, B., Gibis, M., Fischer, L., & Weiss, J. (2012). Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions. Journal of Colloid and Interface Science, 387(1), 65–73.

    Article  CAS  Google Scholar 

  • Zeeb, B., Stenger, C., Hinrichs, J., & Weiss, J. (2016). Formation of concentrated particles composed of oppositely charged biopolymers for food applications - impact of processing conditions. Food Structure, 10, 10–20.

    Article  Google Scholar 

  • Zeeb, B., Mi-Yeon, L., Gibis, M., & Weiss, J. (2018). Growth phenomena in biopolymer complexes composed of heated WPI and pectin. Food Hydrocolloids, 74, 53–61.

    Article  CAS  Google Scholar 

  • Ziani, K., Chang, Y., McLandsborough, L., & McClements, D. J. (2011). Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Journal of Agricultural and Food Chemistry, 59(11), 6247–6255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministry of Economy, Industry and Competitiveness (MINECO/FEDER, UE) throughout projects AGL2015-65975-R and RTI2018-094268-B-C21. María Artiga-Artigas thanks the University of Lleida and Tecnológico de Monterrey, Mexico, for the pre-doctoral and post-doctoral research funds. Heloísa Helena de Abreu Martins thanks for the scholarship financed by “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES), Brazil—finance code 001. Laura Salvia-Trujillo thanks the “Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya” for the Beatriu de Pinós post-doctoral grant (BdP2016-00336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Salvia-Trujillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artiga-Artigas, M., de Abreu-Martins, H.H., Zeeb, B. et al. Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes. Food Bioprocess Technol 13, 1893–1907 (2020). https://doi.org/10.1007/s11947-020-02531-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02531-9

Keywords

Navigation