Skip to main content
Log in

Surface Plasmon Resonance Biosensor with High Sensitivity for Detecting SARS-CoV-2

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents a novel surface plasmon resonance (SPR) biosensor based on Kretchmann configuration for detection of SARS-CoV-2. The sensor incorporates barium titanate (BaTiO3) dielectric material on top of the metal as a 2D material, as well as tungsten disulfide (WS2) in addition to the prism/metal/sensing layer setup. To optimize the sensor’s performance, the integration of emerging materials into conventional sensor structures was thoroughly examined, and key performance parameters were analyzed using the transfer matrix method (TMM) and Fresnel equations. The proposed sensor achieves exceptional angular sensitivity of 450°/RIU, with a 3.5° of full width at half maximum (FWHM) and a 128.57/RIU of figure of merit (FoM), thanks to the combination of BaTiO3 on silver (Ag) and WS2 on BaTiO3. The optimal configuration comprises one layer of WS2 in addition to the metal layer. We also analyzed the electric field of the proposed biosensor with finite element method-based software and demonstrated its potential for future research. Our SPR sensor provides increased sensitivity for detecting SARS-CoV-2 compared to other proposed SPR sensors in the literature. Patient samples have been successfully detected at an early stage of the disease due to the sensor’s enhanced sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The dataset generated during the analysis is available in this article.

References

  1. Yüce M, Filiztekin E, Özkaya KG (2021) COVID-19 diagnosis—a review of current methods. Biosens Bioelectron 172:112752

    Article  PubMed  Google Scholar 

  2. Kevadiya BD et al (2021) Diagnostics for SARS-CoV-2 infections. Nat Mater 20(5):593–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mattioli IA et al (2020) On the challenges for the diagnosis of SARS-CoV-2 based on a review of current methodologies. ACS sensors 5(12):3655–3677

    Article  CAS  PubMed  Google Scholar 

  4. Pandey PS et al (2022) SPR based biosensing chip for COVID-19 diagnosis-a review. IEEE Sens J

  5. Srivastava S et al (2023) Numerical study of titanium dioxide and mxene nanomaterial-based surface plasmon resonance biosensor for virus sars-cov-2 detection. Plasmonics 1–12

  6. Uddin SMA, Chowdhury SS, Kabir E (2021) Numerical analysis of a highly sensitive surface plasmon resonance sensor for SARS-CoV-2 detection. Plasmonics 16(6):2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akib TBA et al (2023) A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. Opt Quant Electron 55(5):448

    Article  CAS  Google Scholar 

  8. Kumar A, Kumar A, Srivastava S (2022) Silicon nitride-BP-based surface plasmon resonance highly sensitive biosensor for virus SARS-CoV-2 detection. Plasmonics 17(3):1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Q et al (2022) Highly sensitive and selective surface plasmon resonance biosensor for the detection of SARS-CoV-2 spike S1 protein. Analyst 147(12):2809–2818

    Article  CAS  PubMed  Google Scholar 

  10. Singh S et al (2023) Enhanced Cu-Ni-TiO 2-BP plasmonic biosensor for highly sensitive biomolecule detection and SARS-CoV-2 diagnosis. IEEE Sens J

  11. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  PubMed  Google Scholar 

  12. Yuan Y, Ding L, Guo Z (2011) Numerical investigation for SPR-based optical fiber sensor. Sens Actuators B Chem 157(1):240–245

    Article  CAS  Google Scholar 

  13. Wijaya E et al (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15(5):208–224

    Article  CAS  Google Scholar 

  14. Wu L et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B Chem 249:542–548

    Article  CAS  Google Scholar 

  15. Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sens Actuators B Chem 229:110–130

    Article  CAS  Google Scholar 

  16. Teng C et al (2022) A high-sensitivity SPR sensor based on MMF-tapered HCF-MMF fiber structure for refractive index sensing. IEEE Sens J 22(19):18517–18523

    Article  CAS  Google Scholar 

  17. Rifat AA et al (2016) Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24(3):2485–2495

    Article  CAS  PubMed  Google Scholar 

  18. Shushama KN et al (2017) Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt Commun 383:186–190

    Article  CAS  Google Scholar 

  19. Kaur B, Kumar S, Kaushik BK (2022) Antimonene, CNT and MoS 2 based SPR-fiber-optic probe for tuberculosis detection. IEEE Sens J 22(15):14903–14910

    Article  CAS  Google Scholar 

  20. Mudgal N et al (2020) Sensitivity enhancement with anti-reflection coating of silicon nitride (Si 3 N 4) layer in silver-based surface plasmon resonance (SPR) sensor for sensing of DNA hybridization. Appl Phys A 126:1–8

    Article  Google Scholar 

  21. Almawgani AH et al (2024) Magnesium oxide and silicon-assisted surface plasmon resonance sensor for gas detection: a performance analysis. Plasmonics 1–13

  22. Boruah R et al (2015) Surface plasmon resonance-based protein bio-sensing using a Kretschmann configured double prism arrangement. IEEE Sens J 15(12):6791–6796

    Article  CAS  Google Scholar 

  23. Panda A, Pukhrambam PD, Keiser G (2020) Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl Phys A 126(3):153

    Article  CAS  Google Scholar 

  24. El-assar M et al (2023) ZnSe-based highly-sensitive SPR biosensor for detection of different cancer cells and urine glucose levels. Opt Quant Electron 55(1):76

    Article  CAS  Google Scholar 

  25. Parmar J et al (2022) Graphene-based refractive index sensor using machine learning for detection of mycobacterium tuberculosis bacteria. IEEE Trans Nanobiosci 22(1):92–98

    Article  Google Scholar 

  26. Raghuwanshi SK, Pandey PS (2022) A numerical study of different metal and prism choices in the surface plasmon resonance biosensor chip for human blood group identification. IEEE Trans Nanobiosci 22(2):292–300

    Article  Google Scholar 

  27. Singh S et al (2023) Theoretical study of perovskite nano material based surface plasmon resonance biosensor for cancers cell detection. Optik 289:171259

    Article  CAS  Google Scholar 

  28. Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120(5):2893–2900

    Article  CAS  Google Scholar 

  29. Fu H et al (2015) Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens J 15(10):5478–5482

    Article  CAS  Google Scholar 

  30. Nur JN et al (2019) Improvement of the performance parameters of the surface plasmon resonance biosensor using Al 2 O 3 and WS 2. Opt Quant Electron 51:1–11

    Article  CAS  Google Scholar 

  31. Shushama KN et al (2017) Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt Quant Electron 49:1–13

    Article  CAS  Google Scholar 

  32. Hasib MHH et al (2019) Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens Matter 4(2):49

    Article  CAS  Google Scholar 

  33. Zhou J et al (2020) Two-dimensional nanomaterial-based plasmonic sensing applications: advances and challenges. Coord Chem Rev 410:213218

    Article  CAS  Google Scholar 

  34. Wu L et al (2018) Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B Chem 277:210–215

    Article  CAS  Google Scholar 

  35. Maurya J et al (2016) Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt Commun 359:426–434

    Article  CAS  Google Scholar 

  36. Jiang L et al (2017) Graphene‐TMDC‐graphene hybrid plasmonic metasurface for enhanced biosensing: a theoretical analysis. Phys Status Solidi A 214(12):1700563

    Article  Google Scholar 

  37. Karki B et al (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron 21(2):445–452

    Article  CAS  Google Scholar 

  38. Karki B et al (2022) Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt Quant Electron 54(2):107

    Article  CAS  Google Scholar 

  39. Anower MS, Rahman MS, Rikta KA (2018) Performance enhancement of graphene-coated surface plasmon resonance biosensor using tungsten disulfide. Opt Eng 57(1):017114–017114

    Article  Google Scholar 

  40. Mak KF et al (2010) Atomically thin MoS 2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805

    Article  PubMed  Google Scholar 

  41. Ouyang Q et al (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6(1):28190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cong C et al (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater 2(2):131–136

    Article  Google Scholar 

  43. Georgiou T et al (2013) Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8(2):100–103

    Article  CAS  PubMed  Google Scholar 

  44. Biswas R, Mazumder N (2022) Recent advances in plasmonic probes: theory and practice

  45. Karki B et al (2024) Gold, MXene, and graphene nanofilm-based surface plasmon resonance sensor for malaria detection. J Opt 1–12

  46. Yan P et al (2017) Large-area tungsten disulfide for ultrafast photonics. Nanoscale 9(5):1871–1877

    Article  CAS  PubMed  Google Scholar 

  47. Fouad S et al (2016) Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. J Nano- Electron Phys (8, 4(2)):04085-1-04085-5

  48. Ghodrati M, Mir A, Farmani A (2022) Sensitivity-enhanced surface plasmon resonance sensor with bimetal/tungsten disulfide (WS2)/MXene (Ti3C2Tx) hybrid structure. Plasmonics 17(5):1973–1984

    Article  CAS  Google Scholar 

  49. Ishtiak KM, Imam S-A, Khosru QD (2022) BaTiO3-Blue phosphorus/WS2 hybrid structure-based surface plasmon resonance biosensor with enhanced sensor performance for rapid bacterial detection. Results Eng 16:100698

    Article  CAS  Google Scholar 

  50. Shushama KN, Rana MM, Inum R (2016) Comparison of two types of graphene coated fiber optic spr biosensors. in 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE). IEEE

  51. Rahman MS et al (2020) Enhanced performance of SnSe-Graphene hybrid photonic surface plasmon refractive sensor for biosensing applications. Photonics Nanostruct Fundam Appl 39:100779

    Article  Google Scholar 

  52. Paranthaman M et al (1997) Growth of biaxially textured buffer layers on rolled-Ni substrates by electron beam evaporation. Physica C 275(3–4):266–272

    Article  CAS  Google Scholar 

  53. Mayer TS et al (1993) Unexpected increase in the thermal generation rate of bulk GaAs due to electron-beam metallization. IEEE Trans Nucl Sci 40(6):1293–1299

    Article  CAS  Google Scholar 

  54. Rahman MS et al (2017) Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sens Bio-Sens Res 16:41–45

    Article  Google Scholar 

  55. Hasan KR, Islam MA, Alam MS (2020) Design of a broadband hybrid plasmonic waveguide for high bulk index sensitivity. In 2020 11th International Conference on Electrical and Computer Engineering (ICECE). IEEE

  56. Uniyal A et al (2023) Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Physica B 669:415282

    Article  CAS  Google Scholar 

  57. Taya SA et al (2023) Detection of virus SARS-CoV-2 using a surface plasmon resonance device based on BiFeO3-graphene layers. Plasmonics 18(4):1441–1448

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea was conceived, data collected, analyzed, and interpreted, and the initial draft was written by Shiven Bhatt and Naina Bose. Kamrun Nahar Shushama, Reefat Inum, and K. B. M. Rakib Hasan were responsible for code writing, data gathering, analysis, interpretation, manuscript writing, editing, and final draft creation, serving as mentors for the research activity’s planning and execution. All authors contributed equally to this paper.

Corresponding authors

Correspondence to Kamrun Nahar Shushama or Reefat Inum.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S., Bose, N., Shushama, K.N. et al. Surface Plasmon Resonance Biosensor with High Sensitivity for Detecting SARS-CoV-2. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02304-6

Keywords

Navigation