Skip to main content
Log in

Sensitivity-Enhanced Surface Plasmon Resonance Sensor with Bimetal/ Tungsten Disulfide (WS2)/MXene (Ti3C2Tx) Hybrid Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This work aims at improving the sensitivity of a surface plasmon resonance (SPR) sensor with the BK7 prism, silver/gold (Ag/Au) bimetallic films, 2D materials tungsten disulfide (WS2), and MXene (Ti3C2Tx) under angular interrogation technique. The proposed SPR sensor is a free space structure using the Kretschmann configuration to stimulate surface plasmons (SPs). The finite-difference time-domain (FDTD) method is used to analyze the optical behavior of the proposed SPR sensor. The thickness of the bimetallic layers and the number of layers of 2D materials are optimized to obtain maximum sensitivity for various sensing medium refractive indices ranging from 1.33 to 1.335 RIU. The maximum sensitivity of 348 deg/RIU is obtained with a thickness of 33 nm Ag, a thickness of 15 nm Au and with monolayer WS2, and four layers of Ti3C2Tx MXene at 633 nm. This excellent performance of the proposed structure makes it suitable for detecting biomolecules and other analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  2. Kretschmann E, Raether H, Notizen (1965) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A 23(12):2135–2136

  3. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  4. Wu L et al (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B, Chem 277:210–215

    Article  CAS  Google Scholar 

  5. AlaguVibisha G et al (2020) Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni. Opt Commun 463(125337)

  6. Raghuwanshi SK, Kumar M, Jindal SK, Kumar A, Prakash O (2020) High-sensitivity detection of hazardous chemical by special featured grating-assisted surface plasmon resonance sensor based on bimetallic layer. IEEE Trans Instrum Meas 69(7):5072–5080

  7. Srivastava A, Verma A, Das R, Prajapati YK (2020) A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 203(163430)

  8. Xu Y, Ang YS, Wu L, Ang LK (2019) High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials 9(2):1–11

    Article  Google Scholar 

  9. Rakhshani MR, Mansouri-Birjandi MA (2018) Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans Nanotechnol 17(3):475–481

    Article  CAS  Google Scholar 

  10. Ghodrati M, Mir A, Farmani A (2020) Carbon nanotube field effect transistors-based gas sensors. In: Nanosensors for Smart Cities. Amsterdam, The Netherlands: Elsevier, pp 171–183. https://doi.org/10.1016/B978-0-12-819870-4.00036-0

  11. Dolatabady A, Asgari S, Granpayeh N (2018) Tunable mid-infrared nanoscale graphene-based refractive index sensor. IEEE Sensors J 18(2):569–574

    Article  CAS  Google Scholar 

  12. Naderi A, Ghodrati M (2018) An efficient structure for T-CNTFETs with intrinsic-n-doped impurity distribution pattern in drain region. Turkish J Electr Eng Comput Sci 26(5):2335–2346. https://doi.org/10.3906/elk-1709-180

    Article  Google Scholar 

  13. Abbasi M, Soroosh M, Namjoo E (2018) Polarization-insensitive temperature sensor based on liquid filled photonic crystal fiber. Optik 168:342–347

    Article  CAS  Google Scholar 

  14. Naderi A, Ghodrati M (2017) Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur Phys J Plus 132(12):510

    Article  Google Scholar 

  15. Naderi A, Ghodrati M (2018) Cut off frequency variation by ambient heating in tunneling p-i-n CNTFETs. ECS J Solid State Sci Technol 7(2):M6–M10

    Article  CAS  Google Scholar 

  16. Parandin F, Heidari F, Rahimi Z, Olyaee S (2021) Two-dimensional photonic crystal biosensors: a review. Opt Laser Technol 144(107397)

  17. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct 156(106970)

  18. Naderi A, Ghodrati M, Baniardalani S (2020) The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. J Comput Electron 19(1):283–290

    Article  CAS  Google Scholar 

  19. Ghodrati M, Farmani A, Mir A (2019) Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sensors J 19(17):7373–7377

    Article  CAS  Google Scholar 

  20. Farmani A, Zarifkar A, Sheikhi MH, Miri M (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattices and Microstruct 112:404–414

    Article  CAS  Google Scholar 

  21. Ghodrati M, Farmani A, Mir A (2021) Non-destructive label-free biomaterials detection using tunneling carbon nanotube based biosensor. IEEE Sensors J 21(7):8847–8854

    Article  CAS  Google Scholar 

  22. Vafapour Z, Troy W, Rashidi A (2021) Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber. IEEE Sensors J 21(17):19307–19313

  23. Ghodrati M, Mir A, Naderi A (2020) New structure of tunneling carbon nanotube FET with electrical junction in part of drain region and step impurity distribution pattern. AEU-Int J Electron Commun 117(153102)

  24. Ghodrati M, Mir A, Naderi A (2021) Proposal of a doping-less tunneling carbon nanotube field-effect transistor. Mater Sci Eng A: B 256(115016)

  25. Mohamadi A, Seifouri M, Karami R, Olyaee S (2021) Proposal of a high-Q biosensor using a triangular photonic crystal filter. Opt Quantum Electron 53(471):1–12

    Google Scholar 

  26. Khozeymeh F, Razaghi M (2021) Sensitivity and intrinsic limit of detection improvement in a photonic refractive-index sensor. Optik 247(167844)

  27. Hajshahvaladi L, Kaatuzian H, Danaie M (2020) A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt Commun 502(127421)

  28. Mozaffari MH, Ebnali-Heidari M, Abaeiani Gh, Moravvej-Farshi MK (2018) Designing a miniaturized photonic crystal based optofluidic biolaser for lab-on-a-chip biosensing applications. Org Electron 54:184–191

    Article  CAS  Google Scholar 

  29. Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

  30. Kumar R, Pal S, Prajapati YK, Saini JP (2020) Sensitivity enhancement of MXene based SPR sensor using silicon: theoretical analysis. Silicon 13:1887–1894

  31. Kumar R, Pal S, Verma A, Prajapati YK, Saini JP (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct 145(106591)

  32. Yue C, Lang Y, Zhou X, Liu Q (2019) Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/ transition metal dichalcogenides hybrid nanostructure. Appl Opt 58(34):9411–9420

    Article  CAS  Google Scholar 

  33. Shushama KN, Rana MDM, Inum R, Hossain MDB (2017) Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt Quantum Electron 49(381)

  34. Dong N et al (2015) Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Sci Rep 5(14646)

  35. Nurrohman DT, Chiu NF (2020) Surface plasmon resonance biosensor performance analysis on 2D material based on graphene and transition metal dichalcogenides. ECS J Solid State Sci Technol 9:115023

    Article  CAS  Google Scholar 

  36. Singh MK, Pal S, Prajapati YK, Saini JP (2020) Sensitivity improvement of surface plasmon resonance sensor on using BlueP/MoS2Heterostructure and antimonene. IEEE Sensors Lett 4(7):1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MG, AM, AF: software, data curation, investigation, conceptualization, methodology, writing — review and editing. AM, AF: validation, data curation, writing — original draft.

Corresponding author

Correspondence to Ali Mir.

Ethics declarations

Consent for Publication

All authors of this paper agree to publish our theoretical research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodrati, M., Mir, A. & Farmani, A. Sensitivity-Enhanced Surface Plasmon Resonance Sensor with Bimetal/ Tungsten Disulfide (WS2)/MXene (Ti3C2Tx) Hybrid Structure. Plasmonics 17, 1973–1984 (2022). https://doi.org/10.1007/s11468-022-01685-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01685-w

Keywords

Navigation