Skip to main content
Log in

MXene-Graphene-MXene–Mediated Heterostructure-Based Surface Plasmon Resonance Sensor for the Detection of Leptospirosis Bacteria in Rodent Urine

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we have designed a graphene mediated heterostructure (MXene-graphene-MXene) based surface plasmon resonance (SPR) sensor for the sensing of leptospirosis bacteria in rodent urine. The polyuria and oliguria signify the low and high concentration of leptospirosis bacteria in rodent urine. Kretschmann configuration is used for sensor design, and transfer matrix method (TMM) is used to model the sensor for reflectivity calculation. Angular interrogation is used to plot SPR curves at characteristic wavelength of 633 nm. First, constituent layers of the proposed sensor are optimized to obtain high sensitivity, detection accuracy (DA), figure of merit (FoM), electric field intensity enhancement factor (EFIEF), and penetration depth (PD). The maximum sensitivity of 214.51°/RIU and 211.71°/RIU is achieved for the detection of polyuria and oliguria, respectively. COMSOL Multiphysics simulation software is used to evaluate field distribution at various layer interface using 1D, 2D plots, and SPPs mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Rojas P, Monahan AM, Schuller S et al (2010) Detection and quantification of leptospires in urine of dogs: a maintenance host for the zoonotic disease leptospirosis. Eur J Clin Microbiol Infect Dis 29:1305–1309

    Article  CAS  PubMed  Google Scholar 

  2. Di Azevedo MIN, Lilenbaum W (2021) An overview on the molecular diagnosis of animal leptospirosis. Lett Appl Microbiol 72:496–508

    Article  PubMed  Google Scholar 

  3. Merien F, Portnoi D, Bourhy P et al (2005) A rapid and quantitative method for the detection of Leptospira species in human leptospirosis. FEMS Microbiol Lett 249:139–147

    Article  CAS  PubMed  Google Scholar 

  4. Levett PN, Branch SL, Edwards CN (2000) Detection of dengue infection in patients investigated for leptospirosis in Barbados. Am J Trop Med Hyg 62:112–114

    Article  CAS  PubMed  Google Scholar 

  5. Zainuddin NH, Chee HY, Rashid SA et al (2023) Enhanced detection sensitivity of Leptospira DNA using a post-deposition annealed carbon quantum dots integrated tapered optical fiber biosensor. Opt Mater (Amst) 141:113926

    Article  CAS  Google Scholar 

  6. Karki B, Pal A, Sarkar P et al (2023) Detection of chikungunya virus using tantalum diselenide (TaSe2)-based surface plasmon resonance biosensor. Plasmonics 1–10. https://doi.org/10.1007/s11468-023-02169-1

  7. Pal A, Uniyal A, Sarkar P et al (2023) Detecting binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and polyethylene glycol in water using surface plasmon resonance sensor: a numerical investigation. Plasmonics. https://doi.org/10.1007/s11468-023-02054-x

    Article  Google Scholar 

  8. Karki B, Salah NH, Srivastava G et al (2023) A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics 1–10. https://doi.org/10.1007/s11468-023-01907-9

  9. Park J-H, Cho Y-W, Kim T-H (2022) Recent advances in surface plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors 12:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stewart ME, Anderton CR, Thompson LB et al (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521. https://doi.org/10.1021/cr068126n

    Article  CAS  PubMed  Google Scholar 

  11. Maurya JB, Prajapati YK, Singh V, Saini JP (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl Phys A Mater Sci Process 121:525–533. https://doi.org/10.1007/s00339-015-9442-3

    Article  ADS  CAS  Google Scholar 

  12. Wu L, Guo J, Wang Q et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuators, B Chem 249:542–548. https://doi.org/10.1016/j.snb.2017.04.110

    Article  CAS  Google Scholar 

  13. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photonics Technol Lett 30:595–598. https://doi.org/10.1109/LPT.2018.2803747

    Article  ADS  CAS  Google Scholar 

  14. Zhao X, Huang T, Ping PS et al (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Switzerland) 18. https://doi.org/10.3390/s18072056

  15. Uniyal A, Pal A, Srivastava G et al (2023) Surface plasmon resonance biosensor sensitivity improvement employing of 2D materials and BaTiO3 with bimetallic layers of silver. J Mater Sci Mater Electron 34:466. https://doi.org/10.1007/s10854-023-09821-w

    Article  CAS  Google Scholar 

  16. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18:1173–1180. https://doi.org/10.1007/s11468-023-01840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Almawgani AHM, Uniyal A, Sarkar P et al (2023) Sensitivity enhancement of optical plasmon-based sensor for detection of the hemoglobin and glucose: a numerical approach. Opt Quantum Electron 55:963. https://doi.org/10.1007/s11082-023-05219-4

    Article  CAS  Google Scholar 

  18. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor. Photonic Sensors 9:284–292. https://doi.org/10.1007/s13320-019-0533-1

    Article  ADS  CAS  Google Scholar 

  19. Prajapati YK, Srivastava A (2019) Effect of blueP/MoS 2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight. Superlattices Microstruct 129:152–162. https://doi.org/10.1016/j.spmi.2019.03.016

    Article  ADS  CAS  Google Scholar 

  20. Raikwar S, Prajapati YK, Srivastava DK et al (2021) Detection of leptospirosis bacteria in rodent urine by surface plasmon resonance sensor using graphene. Photonic Sensors 11:305–313

    Article  ADS  CAS  Google Scholar 

  21. Shukla S, Arora P (2021) Design and analysis of aluminum-silicon-graphene based plasmonic device for biosensing applications in the optical communication band. SILICON 13:3703–3711. https://doi.org/10.1007/s12633-021-00953-4

    Article  CAS  Google Scholar 

  22. Kumar R, Pal S, Prajapati YK et al (2022) Sensitivity improvement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22:6536–6543. https://doi.org/10.1109/JSEN.2022.3154099

    Article  ADS  CAS  Google Scholar 

  23. Kamaruddin NH, Bakar AAA, Yaacob MH et al (2016) Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection. Appl Surf Sci 361:177–184. https://doi.org/10.1016/j.apsusc.2015.11.099

    Article  ADS  CAS  Google Scholar 

  24. Srivastava A, Verma A, Das R, Prajapati YK (2020) A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik (Stuttg) 203. https://doi.org/10.1016/j.ijleo.2019.163430

  25. Kumar R, Pal S, Verma A et al (2020) Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct 145. https://doi.org/10.1016/j.spmi.2020.106591

  26. Sudheer VR, Kumar SRS, Sankararaman S (2020) Ultrahigh sensitivity surface plasmon resonance–based fiber-optic sensors using metal-graphene layers with Ti3C2TxMXene overlayers. Plasmonics 15:457–466. https://doi.org/10.1007/s11468-019-01035-3

    Article  CAS  Google Scholar 

  27. Wu L, Guo J, Wang Q et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuators B Chem 249:542–548. https://doi.org/10.1016/j.snb.2017.04.110

  28. Rahman MS, Anower MS, Rahman MK et al (2017) Modeling of a highly sensitive MoS2-graphene hybrid based fiber optic SPR biosensor for sensing DNA hybridization. Optik (Stuttg) 140:989–997

    Article  ADS  CAS  Google Scholar 

  29. Basak C, Hosain MK, Islam MS, Kouzani AZ (2023) Design and modeling of an angular interrogation based surface plasmon resonance biosensor for dengue virus detection. Opt Quantum Electron 55:438. https://doi.org/10.1007/s11082-023-04708-w

    Article  CAS  Google Scholar 

  30. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron 21:445–452. https://doi.org/10.1007/s10825-022-01854-4

    Article  CAS  Google Scholar 

  31. Hossain MB, Rana MM, Abdulrazak LF et al (2019) Graphene-MoS2 with TiO2SiO2 layers based surface plasmon resonance biosensor: numerical development for formalin detection. Biochem Biophys reports 18:100639

    Article  Google Scholar 

  32. Wu L, Ling Z, Jiang L et al (2016) Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photonics J8. https://doi.org/10.1109/JPHOT.2016.2533923

  33. Hossain MB, Rana MM, Abdulrazak LF et al (2019) Design and analysis of graphene–MoS2 hybrid layer based SPR biosensor with TiO2–SiO2 nano film for formalin detection: numerical approach. Opt Quantum Electron 51:. https://doi.org/10.1007/s11082-019-1911-z

  34. Hossain MB, Rana MM (2016) DNA hybridization detection based on resonance frequency readout in graphene on Au SPR biosensor. J sensors 2016

  35. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing. Plasmonics 16:1781–1790. https://doi.org/10.1007/s11468-020-01315-3

    Article  CAS  Google Scholar 

  36. Kumar R, Pal S, Pal N et al (2021) Figure of merit enhancement of Ti3C2Tx-graphene based long-range surface plasmon sensor at telecommunication wavelength. Opt Quantum Electron 53:218. https://doi.org/10.1007/s11082-021-02862-7

    Article  CAS  Google Scholar 

  37. Panda A, Pukhrambam PD, Keiser G (2020) Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl Phys A 126:153

    Article  ADS  CAS  Google Scholar 

  38. Ghorbanpour M (2015) Fabrication of a new amine functionalised bi-layered gold/silver SPR sensor chip. J Phys Sci 26:1–10

    CAS  Google Scholar 

  39. Alhabeb M, Maleski K, Anasori B et al (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem Mater 29:7633–7644

    Article  CAS  Google Scholar 

  40. Menon PS, Jamil NA, Mei GS et al (2020) Multilayer CVD-graphene and MoS2 ethanol sensing and characterization using Kretschmann-based SPR. IEEE J Electron Devices Soc 8:1227–1235. https://doi.org/10.1109/JEDS.2020.3022036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Rajeev Kumar: simulation, formal analysis, and writing; Sarika Pal: formal analysis and writing—original draft; Narendra Pal: design, simulation, and modeling; Alka Verma: conceptualization and formal analysis; Yogendra Kumar Prajapati: conceptualization and supervision.

Corresponding author

Correspondence to Sarika Pal.

Ethics declarations

Ethics Approval

Not required as data presented here is based on numerical study.

Consent to Participate

No consent is required.

Consent for Publication

All authors of this draft express their consent to publish this theoretical research.

Competing Interests

Authors state no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Pal, S., Pal, N. et al. MXene-Graphene-MXene–Mediated Heterostructure-Based Surface Plasmon Resonance Sensor for the Detection of Leptospirosis Bacteria in Rodent Urine. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02246-z

Keywords

Navigation