Skip to main content
Log in

Multiple-Mode Bowtie Cavities for Refractive Index and Glucose Sensors Working in Visible and Near-infrared Wavelength Ranges

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A multiple-mode metal-insulator-metal plasmonic sensor with four coupled bowtie resonators containing two pairs of silver baffles is numerically investigated using the finite element method and verified by the temporal coupled mode theory. The proposed structure can function as a plasmonic refractive index and glucose sensors working in visible and near-infrared wavelength ranges. Simulation results show that introducing the silver baffles in bowtie cavities can modify the plasmon resonance modes and give a tunable way to enhance the sensitivity and figure of merit. The highest sensitivity (S) can reach S = 1500.00, 1400.00, and 1100.00 nm/RIU and the high figure of merit (FOM) of 50.00, 46.67, and 36.67 RIU−1 from mode 1 to mode 3. The sensitivity obtained from three modes with operating wavelengths in visible and near-infrared simultaneously exceeds 1100.00 nm/RIU along with remarkably high FOM, which are not attainable from other reported literature. The proposed structure can realize multi-mode and shows impressive practical prospects that can be applied for integrated optics circuits (IOCs) and other nanophotonics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data and material are in the manuscript.

References

  1. El Kabbash M, Rahimi Rashed A, Sreekanth KV, De Luca A, Infusino M, Strangi G (2016) Plasmon-exciton resonant energy transfer: across scales hybrid systems. J Nanomater 2016:4819040

    Article  CAS  Google Scholar 

  2. Ho YZ, Chen WT, Huang Y-W, Wu PC, Tseng ML, Wang YT, Chau Y-F, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J Opt 14:114010

    Article  CAS  Google Scholar 

  3. Hsieh L-Z, Chau Y-FC, Lim CM, Lin M-H, Huang HJ, Lin C-T, NurSyafi’ie MI, M (2016) Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt Commun 370:85–90

    Article  CAS  Google Scholar 

  4. Huang Y-W, Chen WT, Wu PC, Fedotov V, Savinov V, Ho YZ, Chau Y-F, Zheludev NI, Tsai DP (2012) Design of plasmonic toroidal metamaterials at optical frequencies. Opt Express 20:1760–1768

    Article  PubMed  Google Scholar 

  5. Chung-Ting Chou C, Yuan-Fong Chou C, Hai-Pang C (2020) Highly Sensitive Metal-Insulator-Metal Plasmonic Refractive Index Sensor with a Centrally Coupled Nanoring Containing Defects. J Phys D Appl Phys

  6. Tsai D-P (2020) Exploring the electromagnetic information of metasurfaces. National Sci Rev 7:1845–1846

    Article  Google Scholar 

  7. Su D-S, Tsai DP, Yen T-J, Tanaka T (2019) Ultrasensitive and selective gas sensor based on a channel plasmonic structure with an enormous hot spot region. ACS Sensors 4:2900–2907

    Article  CAS  PubMed  Google Scholar 

  8. Lai Y-C, Kuang TC, Cheng BH, Lan Y-C, Tsai DP (2017) Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation. Sci Rep 7:11096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chou Chao C-T, Chou Chau Y-F, Chiang H-P (2020) Enhancing plasmonic effect in periodic nanometal square prisms with fences and cavities for refractive index and temperature sensing applications. J Nanoparticle Res 22:297

    Article  Google Scholar 

  10. Chou Chau Y-F, Chou Chao C-T, Huang HJ, Kooh MRR, Kumara NTRN, Lim CM, Chiang H-P (2020) Ultrawide bandgap and high sensitivity of a plasmonic metal-insulator-metal waveguide filter with cavity and baffles. Nanomaterials 10:2030

    Article  PubMed Central  CAS  Google Scholar 

  11. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14:1453–1465

    Article  CAS  Google Scholar 

  12. Han Z, Van V, Herman WN, Ho PT (2009) Aperture-coupled Mim plasmonic ring resonators with sub-diffraction modal volumes. Opt Express 17:12678–12684

    Article  CAS  PubMed  Google Scholar 

  13. Lu H, Wang G, Liu X (2013) Manipulation of Light in Mim Plasmonic Waveguide Systems. Chin Sci Bull 58:

  14. Luo S, Li B, Xiong D, Zuo D, Wang X (2017) A High Performance Plasmonic Sensor Based on Metal-Insulator-Metal Waveguide Coupled with a Double-Cavity Structure. Plasmonics 12:

  15. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a Refractive Index Plasmonic Sensor Based on a Ring Resonator Coupled to a Mim Waveguide Containing Tapered Defects. Plasmonics 15:

  16. Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314–16325

    Article  PubMed  Google Scholar 

  17. Lu H, Wang G, Liu X (2013) Manipulation of light in Mim plasmonic waveguide systems. Chin Sci Bull 58:3607–3616

    Article  CAS  Google Scholar 

  18. Xiang D, Li W (2014) Mim plasmonic waveguide splitter with tooth-shaped structures. J Mod Opt 61:222–226

    Article  CAS  Google Scholar 

  19. Kamada S, Okamoto T, El-Zohary SE, Haraguchi M (2016) Design optimization and fabrication of Mach-Zehnder interferometer based on Mim plasmonic waveguides. Opt Express 24:16224–16231

    Article  CAS  PubMed  Google Scholar 

  20. Xie Y, He C, Li J, Song T, Zhang Z, Mao Q (2016) Theoretical Investigation of a Plasmonic Demultiplexer in Mim Waveguide Crossing with Multiple Side-Coupled Hexagonal Resonators. IEEE Photonics J PP:1–1

  21. Neutens P, Lagae L, Borghs G, Van Dorpe P (2012) Plasmon filter and resonator in metal-insulator-metal waveguides. Opt Express 20:3408–3423

    Article  CAS  PubMed  Google Scholar 

  22. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide. Opt Express 18:21030–21037

    Article  CAS  PubMed  Google Scholar 

  23. Butt A, Khonina S, Kazanskiy N (2020) Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens 10:223–232

    Article  CAS  Google Scholar 

  24. Chou Chao C-T, Chou Chau Y-F, Huang HJ, Kumara N, Kooh MRR, Lim CM, Chiang H-P (2020) Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10:1399

    Article  PubMed Central  CAS  Google Scholar 

  25. Chou Chau Y-F, Chou Chao C-T, Chiang H-P (2020) Ultra-broad bandgap metal-insulator-metal waveguide filter with symmetrical stubs and defects. Results Phys 17:103116

    Article  Google Scholar 

  26. Chou Chau Y-F, Chou Chao C-T, Huang HJ, Kumara N, Lim CM, Chiang H-P (2019) Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials 9:1433

    Article  PubMed Central  CAS  Google Scholar 

  27. Guo Z, Wen K, Hu Q, Lai W, Lin J, Fang Y (2018) Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide. Sensors 18:

  28. Malmir K, Habibiyan H, Ghafoorifard H (2016) An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator. Opt Commun 365:150–156

    Article  CAS  Google Scholar 

  29. Nejat M, Nozhat N (2020) Multi-band Mim refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region. Sci Rep 10:6357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu C, Ding H, Huang T, Wu X, Chen B, Ren K, Fu S (2018) Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13:251–257

    Article  CAS  Google Scholar 

  31. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator. Sensors (Basel) 18:

  32. Chau Y-F, Jiang Z-H (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6:581–589

    Article  CAS  Google Scholar 

  33. Chau Y-F, Yeh H-H, Tsai DP (2009) Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys Plasmas 16:022303

    Article  CAS  Google Scholar 

  34. Chau Y-FC, Syu J-Y, Chao C-TC, Chiang H-P, Lim CM (2016) Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J Phys D Appl Phys 50:045105

    Article  CAS  Google Scholar 

  35. Chen WT, Wu PC, Chen CJ, Chung H-Y, Chau Y-F, Kuan C-H, Tsai DP (2010) Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks. Opt Express 18:19665–19671

    Article  CAS  PubMed  Google Scholar 

  36. Chou Chau Y-F, Lim CM, Lee C, Huang HJ, Lin C-T, Kumara N, Yoong VN, Chiang H-P (2016) Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. J Appl Phys 120:093110

    Article  CAS  Google Scholar 

  37. Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl Phys Lett 93:181108

    Article  CAS  Google Scholar 

  38. Kurokawa Y (2007) Metal-Insulator-Metal Plasmon Nanocavities: Analysis of Optical Properties. Phys Rev B 75.

  39. Janković N, Cselyuszka N (2019) High-resolution plasmonic filter and refractive index sensor based on perturbed square cavity with slits and orthogonal feeding scheme. Plasmonics 14:555–560

    Article  CAS  Google Scholar 

  40. Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2014) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10:27–32

    Article  CAS  Google Scholar 

  41. Chou Chau Y-F, Chou Chao C-T, Rao J-Y, Chiang H-P, Lim CM, Lim RC, Voo NY (2016) Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res Lett 11:411

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiang Z, Wang L, Wang L, Li X-F, Huang W-Q, Wen S-C, Fan D-Y (2013) Tuning bandgap of a double-tooth-shaped Mim waveguide filter by control widths of the teeth. J Opt 15:5008

    Google Scholar 

  43. Zhou J, Chen H, Zhang Z, Tang J, Cui J, Xue C, Yan S-B (2017) Transmission and refractive index sensing based on fano resonance in Mim waveguide-coupled trapezoid cavity. AIP Adv 7:015020

    Article  CAS  Google Scholar 

  44. Zhang Z, Ma L-J, Gao F, Zhang Y-J, Tang J, Cao H-L, Zhang B-Z, Wang J-C, Yan S-B, Xue C-Y (2017) Plasmonically induced reflection in metal–insulator–metal waveguides with two silver baffles coupled square ring resonator. Chin Phys B 26:124212

    Article  CAS  Google Scholar 

  45. Han Z, Bozhevolnyi SI (2012) Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76:016402

    Article  PubMed  CAS  Google Scholar 

  46. Lo Y-L, Yu T-C (2006) A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal. Opt Commun 259:40–48

    Article  CAS  Google Scholar 

  47. Hepp S, Bauer S, Hornung F, Schwartz M, Portalupi SL, Jetter M, Michler P (2018) Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Opt Express 26:30614–30622

    Article  CAS  PubMed  Google Scholar 

  48. Rakhshani M, Mansouri-Birjandi M (2017) Utilizing the Metallic Nano-Rods in Hexagonal Configuration to Enhance Sensitivity of the Plasmonic Racetrack Resonator in Sensing Application. Plasmonics 12

  49. Yun B, Hu G, Zhang R, Yiping C (2016) Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J Opt 18:055002

    Article  CAS  Google Scholar 

  50. Kaniber M, Schraml K, Regler A, Bartl J, Glashagen G, Flassig F, Wierzbowski J, Finley JJ (2016) Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci Rep 6:23203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roxworthy BJ, Ko KD, Kumar A, Fung KH, Chow EKC, Liu GL, Fang NX, Toussaint KC (2012) Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett 12:796–801

    Article  CAS  PubMed  Google Scholar 

  52. Wang B, Singh SC, Lu H, Guo C (2020) Design of aluminum bowtie nanoantenna array with geometrical control to tune Lspr from Uv to near-Ir for optical sensing. Plasmonics 15:609–621

    Article  CAS  Google Scholar 

  53. Ding W, Bachelot R, Kostcheev S, Royer P, Lamaestre REd (2010) Surface plasmon resonances in silver bowtie nanoantennas with varied bow angles. J Appl Phys 108:124314

    Article  CAS  Google Scholar 

  54. Ruan Z, Fan S (2010) Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle. J Phys Chem C 114:7324–7329

    Article  CAS  Google Scholar 

  55. Chou Chao C-T, Chou Chau Y-F, Chiang H-P (2021) Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects. J Phys D Appl Phys 54:115301

    Article  CAS  Google Scholar 

  56. El Haffar R, Farkhsi A, Mahboub O (2020) Optical properties of Mim plasmonic waveguide with an elliptical cavity resonator. Appl Phys A 126:486

    Article  CAS  Google Scholar 

  57. Bahramipanah M, Abrishamian MS, Mirtaheri SA, Liu J-M (2014) Ultracompact plasmonic loop-stub notch filter and sensor. Sensors Actuat B: Chem 194:311–318

    Article  CAS  Google Scholar 

  58. Chau Y-F, Lin Y-J, Tsai DP (2010) Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars. Opt Express 18:3510–3518

    Article  CAS  PubMed  Google Scholar 

  59. Chau Y-F, Yeh H-H (2011) A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J Nanopart Res 13:637–644

    Article  CAS  Google Scholar 

  60. Chen W-C, Cardin A, Koirala M, Liu X, Tyler T, West KG, Bingham CM, Starr T, Starr AF, Jokerst NM, Padilla WJ (2016) Role of surface electromagnetic waves in metamaterial absorbers. Opt Express 24:6783–6792

    Article  CAS  PubMed  Google Scholar 

  61. Sun Y-S, Chau Y-F, Yeh H-H, Tsai DP (2008) Highly birefringent index-guiding photonic crystal fiber with squeezed differently sized air-holes in cladding. Jpn Appl Phys 47:3755

    Article  CAS  Google Scholar 

  62. Yang K-Y, Chau Y-F, Huang Y-W, Yeh H-Y, Ping Tsai D (2011) Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. J Appl Phys 109:093103

    Article  CAS  Google Scholar 

  63. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  64. Chen C, Oh S-H, Li M (2020) Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing. Opt Express 28:2020–2036

    Article  CAS  PubMed  Google Scholar 

  65. Woolf D, Loncar M, Capasso F (2009) The forces from coupled surface plasmon polaritons in planar waveguides. Opt Express 17:19996–20011

    Article  CAS  PubMed  Google Scholar 

  66. Vieu C, Carcenac F, Pépin A, Chen Y, Mejias M, Lebib A, Ferlazzo L, Couraud L, Launois H (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117

    Article  CAS  Google Scholar 

  67. Chen Y (2015) Nanofabrication by electron beam lithography and its applications: a review. Microelectron Eng 135:57–72

    Article  CAS  Google Scholar 

  68. Zhang ZD, Wang RB, Zhang ZY, Tang J, Zhang WD, Xue CY, Yan SB (2017) Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12:1007–1013

    Article  CAS  Google Scholar 

  69. Butt MA, Kazanskiy NL, Khonina SN (2020) Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens 10:223–232

    Article  CAS  Google Scholar 

  70. Butt MA, Khonina SN, Kazanskiy NL (2020) An array of nano-dots loaded Mim square ring resonator with enhanced sensitivity at Nir wavelength range. Optik 202:163655

    Article  CAS  Google Scholar 

  71. Sung MJ, Ma YF, Chau YF, Huang DW (2010) Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 Nm. Appl Opt 49:6295–6301

    Article  CAS  PubMed  Google Scholar 

  72. Sung M-J, Ma Y-F, Chau Y-F, Huang D-W (2010) Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders. Appl Opt 49:920–926

    Article  CAS  PubMed  Google Scholar 

  73. Zeng X, Hu H, Gao Y, Ji D, Zhang N, Song H, Liu K, Jiang S, Gan Q (2015) Phase change dispersion of plasmonic nano-objects. Sci Rep 5:12665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ni B, Chen X, Xiong D, Liu H, Hua G, Chang J, Zhang J, Zhou H (2015) Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt Quant Electron 47:1339–1346

    Article  CAS  Google Scholar 

  75. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16:642

    Article  PubMed Central  Google Scholar 

  76. Liu X, Wu D, Chang Q, Zhou J, Zhang Y, Wang Z (2017) Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering. Nanoscale 9:15390–15396

    Article  CAS  PubMed  Google Scholar 

  77. Butt MA, Khonina SN, Kazanskiy NL (2019) Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J Mod Opt 66:1038–1043

    Article  CAS  Google Scholar 

  78. Kazanskiy NL, Butt MA, Khonina SN (2020) Nanodots decorated Mim semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostructures - Fundam Appl 42:100836

    Article  Google Scholar 

  79. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140:386–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jiang J, Wang X, Li S, Ding F, Li N, Meng S, Li R, Qi J, Liu Q, Liu GL (2018) Plasmonic Nano-Arrays for Ultrasensitive Bio-Sensing Nanophotonics 7:1517–1531

    CAS  Google Scholar 

  81. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57:7798–7804

    Article  CAS  PubMed  Google Scholar 

  82. Yeh Y-L (2008) Real-time measurement of glucose concentration and average refractive index using a laser interferometer. Opt Lasers Eng 46:666–670

    Article  Google Scholar 

Download references

Funding

This research was supported by the University Research Grant of Universiti Brunei Darussalam (Grant No. UBD/RSCH/1.9/FICBF(b)/2019/006).

Author information

Authors and Affiliations

Authors

Contributions

Only the single author has the contribution to this work.

Corresponding author

Correspondence to Yuan-Fong Chou Chau.

Ethics declarations

Ethics Approval

This material is the author’ own original work, which has not been previously published elsewhere.

Consent to Participate

This is a theoretical study on the design of a plasmonic sensor.

Consent for Publication

The author of this paper agrees to publish this work.

Conflict of Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 242 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou Chau, YF. Multiple-Mode Bowtie Cavities for Refractive Index and Glucose Sensors Working in Visible and Near-infrared Wavelength Ranges. Plasmonics 16, 1633–1644 (2021). https://doi.org/10.1007/s11468-021-01431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01431-8

Keywords

Navigation