Skip to main content
Log in

A Switchable Metalens Based on Active Tri-Layer Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metasurfaces, which are composed of two-dimensional arrays of subwavelength structures, can reshape the wavefront arbitrarily by introducing phase discontinuities with the entire 2π phase region. In this paper, we demonstrate a switchable metalens based on active tri-layer metasurfaces by hybridizing a phase-change material, vanadium dioxide (VO2). The reflection and transmission coefficients of the metasurface element and the focusing performance of the switchable metalens were studied and simulated. At room temperature (300 K), VO2 behaves as a semiconductor and our proposed metalens can reflect and converge the co-polarized terahertz wave with high efficiency, working as a reflective lens. When the temperature is up to around 400 K, the VO2 material is switched into metal phase and the proposed metalens is switched into its operating state as a transmission mode for the cross-polarized terahertz wave. By thermal stimulation or electrical bias, the switchable meta-devices proposed in this paper can be applied in the fields for imaging, communication, and power modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333–337

    Article  CAS  PubMed  Google Scholar 

  2. Liu LX, Zhang XQ, Kenney M, Su XQ, Xu NN, Ouyang CM, Shi YL, Han JG, Zhang WL, Zhang S (2014) Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 26:5031–5036

    Article  CAS  PubMed  Google Scholar 

  3. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138):1304–1307

    Article  CAS  PubMed  Google Scholar 

  4. Chen M, Sun W, Cai JJ, Chang LZ, Xiao XF (2017) Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface. Plasmonics 12(3):699–705

    Article  CAS  Google Scholar 

  5. Cong L, Cao W, Zhang XQ, Tian Z, Gu JQ, Singh AJ, Han JG, li W (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103(17):17039

    Article  CAS  Google Scholar 

  6. Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:6328–6333

    Article  CAS  PubMed  Google Scholar 

  7. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12(9):4932–4936

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Xiao SY, Cai BG, He Q, Cui TJ, Zhou L (2012) Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett 37(23):4940–4942

    Article  PubMed  Google Scholar 

  9. Wang Q, Zhang XQ, Xu YH, Tian Z, Go JQ, Yue WS, Zhang S, Han JG, Zhang WL (2015) A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater 3(6):779–785

    Article  CAS  Google Scholar 

  10. Chang CC, Headland D, Abbott D, Withayachumnankul W, Chen HT (2017) Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces. Opt Lett 42(9):1867–1870

    Article  CAS  PubMed  Google Scholar 

  11. Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J, Zentgraf T, Zhang S (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808

    Article  CAS  PubMed Central  Google Scholar 

  12. Chen WT, Yang KY, Wang CM, Wang HYW, Sun G, Chiang ID, Liao CY, Hsu LW, Lin HT, Sun S (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14:225–230

    Article  CAS  PubMed  Google Scholar 

  13. Yan X, Liang LJ, Yang J, Liu WW, Ding X, Xu DG, Zhang YT, Cui TJ, Yao JQ (2015) Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface. Opt Express 23:29128–29137

    Article  PubMed  Google Scholar 

  14. Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C (2015) Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10(1):133

    Article  CAS  PubMed  Google Scholar 

  15. Ma F, Lin YS, Zhang XH, Lee C (2014) Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3(5):e171

    Article  CAS  Google Scholar 

  16. Bu T, Chen KJ, Liu H, Liu JJ, Hong Z, Zhuang SL (2016) Location-dependent metamaterials in terahertz range for reconfiguration purposes. Photon Res 4:122

    Article  CAS  Google Scholar 

  17. Rahmani M, Xu L, Miroshnichenko AE, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang GQ, Neshev DN (2017) Reversible thermal tuning of all-dielectric metasurfaces. Adv Funct Mater 27(31):1700580

    Article  CAS  Google Scholar 

  18. Jeong YG, Bernien H, Kyoung JS, Park HR, Kim HS, Cho JW, Kim BJ, Kim HT, Ahn KJ, Kim DS (2011) Electrical control of terahertz nano antennas on VO2 thin film. Opt Express 19:21211–21215

    Article  CAS  PubMed  Google Scholar 

  19. Gu JQ, Singh R, Liu XJ, Zhang XQ, Ma YF, Zhang S, Maier SA, Tian Z, Azad AK, Chen HT, Taylor AJ, Han JG, Zhang WL (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3(4):1151

    Article  CAS  PubMed  Google Scholar 

  20. Wang DC, Zhang LC, Gu YH, Mehmood MQ, Gong YD, Srivastava A, Jian L, Venkatesan T, Qiu CW, Hong MH (2015) Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci Rep 5:15020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu MK, Hwang HY, Tao H, Strikwerda AC, Fan KB, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu JW (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487:345–348

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Zhang L, Gong Y, Jian L, Venkatesan T, Qiu CW, Hong M (2016) Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics J 8:1–8

    Google Scholar 

  23. Ferraro A, Dimitrios C, Zografopoulos RC, Beccherelli R (2017) Broad- and narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates. IEEE J Sel Top Quantum Electron 23:1–8

    Article  Google Scholar 

  24. Tang Q, Liang M, Lu Y, Wong PK, Wilmink GJ, Zhang DD, Xin H (2016) Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications. Sensors 16:476

    Article  Google Scholar 

  25. Hu F, Wang L, Quan B, Xu X, Li Z, Wu Z, Pan Z (2013) Design of a polarization insensitive multiband terahertz metamaterial absorber. J Phys D Appl Phys 46:195103

    Article  CAS  Google Scholar 

Download references

Funding

This paper is funded by the National Natural Science Foundation of China (No. 61205095), the Shanghai Young College Teacher Develop funding schemes (No. slg11006.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, R., Hua, Y., Chen, K. et al. A Switchable Metalens Based on Active Tri-Layer Metasurface. Plasmonics 14, 165–171 (2019). https://doi.org/10.1007/s11468-018-0789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0789-0

Keywords

Navigation