Skip to main content

Advertisement

Log in

Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have proposed two designs of graphene-enabled cross polarization converters, which are capable of high-efficiency polarization conversion rate and can work equally well for a wide range of incident wave angles. The first type is carefully constructed by an ellipse-shaped graphene sheet printed on a dielectric material backed up by a gold ground plane, while the second one comprises a graphene ring embedded an ellipse resonator. Numerical results demonstrate that the polarization conversion rate of the first polarizer reaches 99.38 % at 22.541 THz when the Fermi energy is fixed at 0.9 eV. The second one can simultaneously work at two frequencies with its polarization conversion rate being 96.74 and 95.88 %, respectively. Therefore, for two devices, the incident linearly polarized beams are almost completely rotated to its orthogonal counterpart after reflection in the mid-infrared spectral range. More importantly, the cross polarization amplitude and resonant frequencies can be dynamically tuned by shifting the Fermi energy without changing the nanostructure, which will exhibit enormous potential applications in photonics field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hanna L, Jari T, Jani T (2005) Design of polarization gratings for broadband illumination. Opt Express 13(8):3055–3067

    Article  Google Scholar 

  2. Du GX, Saito S, Takahashi M (2011) Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array. Appl Phys Lett 99(19):191107

    Article  CAS  Google Scholar 

  3. Feng M, Wang J, Ma H, et al. (2013) Broadband polarization rotator based on multi-order plasmon resonances and high impedance surface. J Appl Phys 114(7):074508

    Article  CAS  Google Scholar 

  4. Huang L, Chen X, Mühlenbernd H, et al. (2012) Dispersionless phase discontinuities for controlling light propagation. Nano Lett 12(11):5750–5755

    Article  CAS  PubMed  Google Scholar 

  5. Francesco A, Patrice G, Mikhail K, et al. (2013) Aberrations of flat lenses and aplanatic metasurfaces. Opt Express 21(21):31530–31539

    Google Scholar 

  6. Wei Ting C, Kuang-Yu Y, Chih-Ming W, et al. (2014) High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14(1):225

    Article  CAS  Google Scholar 

  7. Yang B, Ye WM, Yuan XD, et al. (2013) Design of ultrathin plasmonic quarter-wave plate based on period coupling. Opt Lett 38(5):679–681

    Article  PubMed  Google Scholar 

  8. Yang Y, Wang W, Moitra P, et al. (2014) Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14(3):1394–1399

    Article  CAS  PubMed  Google Scholar 

  9. Li R, Guo Z, Wang W, et al. (2015a) High-efficiency cross polarization converters by plasmonic metasurface. Plasmonics 10(5):1–6

    Article  CAS  Google Scholar 

  10. Song Z, Zhang L, Liu QH (2015) High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic meta-surface. Plasmonics 1:4

    Google Scholar 

  11. Liu W, Chen S, Li Z, et al. (2015) Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface. Opt Lett 40(13):3185–3188

    Article  PubMed  Google Scholar 

  12. Xi C (2013) Terahertz angle-insensitive 90° polarization rotator using chiral metamaterial. Phys B Condens Matter 422(422):83–86

    Article  CAS  Google Scholar 

  13. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694

    Article  CAS  PubMed  Google Scholar 

  14. Fang Z, Wang Y, Liu Z, et al. (2012) Plasmon-induced doping of graphene. ACS Nano 6(11):10222–10228

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa A, Tanaka T (2013) Plasmon hybridization in graphene metamaterials. Appl Phys Lett 102(25):253110

    Article  CAS  Google Scholar 

  16. Li J, Yu P, Cheng H, et al. (2016) Optical polarization encoding using graphene-loaded plasmonic metasurfaces. Adv Opt Mater 4(1):91–98

    Article  CAS  Google Scholar 

  17. Li Z, Yao K, Xia F, et al (2015b) Graphene plasmonic metasurfaces to steer infrared light. Sci Rep 5

  18. Cheng H, Chen S, Yu P, et al. (2015) Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv Opt Mater 3(12):1744–1749

    Article  CAS  Google Scholar 

  19. Chen PY, Soric J, Padooru YR, et al. (2013) Nanostructured graphene metasurface for tunable terahertz cloaking. New J Phys 5(12):919–926

    Google Scholar 

  20. Fal’kovskii LA (2008) Optical properties of graphene. J Exp Theor Phys 115(3):496–508

    Article  CAS  Google Scholar 

  21. Ashkan V, Nader E (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  22. Menzel C, Rockstuhl C, Lederer F (2010) An advanced Jones calculus for the classification of periodic metamaterial. Phys Rev A 82(5):3464–3467

    Article  CAS  Google Scholar 

  23. Hao JM, Ren QJ, An ZH et al (2009) Optical metamaterial for polarization control. Phys Rev A 80(2):92–92

    Google Scholar 

  24. Yao G, Ling F, Yue J et al (2015) Dynamically tunable terahertz cross polarization amplitude based on graphene metamaterial. Optoelectronic Devices and Integration. doi:10.1364/OEDI.2015.JW3A.38

  25. Hsiao-Kuan Y, Chettiar UK, Wenshan C, et al. (2007) A negative permeability material at red light. Opt Express 15(3):1076–1083

    Article  Google Scholar 

  26. Minovkoppensich FHL, Chang DE, Thongrattanasiri S, et al. (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  27. Furchi M, Urich A, Pospischil A, et al. (2012) Microcavity-integrated graphene photodetector. Nano Lett 12(6):2773–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding J, Arigong B, Ren H, et al. (2014) Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array. Plasmonics 10(2):351–356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Additional information

Ming Chen and Wei Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Sun, W., Cai, J. et al. Frequency-Tunable Mid-Infrared Cross Polarization Converters Based on Graphene Metasurface. Plasmonics 12, 699–705 (2017). https://doi.org/10.1007/s11468-016-0316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0316-0

Keywords

Navigation