Skip to main content
Log in

Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We reported a simple hydrothermal method to fabricate Au nanoparticles-decorated ZnO nanorods (ZnO-NRs) using aligned ZnO-NRs arrays as a template. Via changing the concentration of HAuCl4 aqueous solution, the size and density of Au nanoparticles (NPs) on the surface of ZnO-NRs could be readily tuned. The photoluminescence of Au-NPs decorated ZnO-NRs were investigated, in order to optimize the configuration of the Au-NPs decorated ZnO-NRs system realizing the maximum band emission. Due to a synergistic effect of the adjacent Au NPs and ZnO-NRs and efficiently coupled localized surface plasmon resonance (SPR) excitation, an optimized sample employing Au NPs with 15-nm size showed best catalytic efficiency. We have proposed a mechanism that is the electron transfer from surface-plasmon-stimulated \Au NPs to the conduction band of ZnO-NRs. These results demonstrate that Au NPs can significantly enhance the charge separation by extracting electrons from the photoexcited ZnO and consequently improve the photocatalytic activity of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu CT, Chu MW, Liu CP, Chen KH, Chen LC, Chen CW, Chen CH (2012) Plasmonics 7:123–130

    Article  CAS  Google Scholar 

  2. Chandiran AK, Abdi-Jalebi M, Yella A, Dar MI, Yi CY, Shivashankar SA, Nazeeruddin MK, Grätzel M (2014) Nano Lett 14:1190–1195

    Article  CAS  Google Scholar 

  3. He WW, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2014) J Am Chem Soc 136:750–757

    Article  CAS  Google Scholar 

  4. Lawrie BJ, Mu R, Haglund RF (2013) Plasmonics 8:693–697

    Article  CAS  Google Scholar 

  5. Voss T, Svacha GT, Mazur E (2007) Nano Lett 7:3675–3680

    Article  CAS  Google Scholar 

  6. Zhou X, Liu G, Yu J, Fan W (2012) J Mater Chem 22:21337–21354

    Article  CAS  Google Scholar 

  7. He WW, Wu HH, Wamer WG, Kim HK, Zheng JW, Jia HM, Zheng Z, Yin JJ (2014) ACS Appl Mater Interfaces 6:15527–15535

    CAS  Google Scholar 

  8. Huang PS, Kim DH, Lee JK (2014) Appl Phys Lett 104:142102

    Article  Google Scholar 

  9. Hou XM (2014) Mater Lett 137:319–322

    Article  CAS  Google Scholar 

  10. Wood A, Giersig M, Mulvaney P (2001) J Phys Chem B 105:8810–8815

    Article  CAS  Google Scholar 

  11. Subramanian V, Wolf EE, Kamat PKV (2003) J Phys Chem B 107:7479–7485

    Article  CAS  Google Scholar 

  12. Cushing SK, Li JT, Meng FK, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  13. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Nat Commun 2:517

    Article  Google Scholar 

  14. Ide Y, Matsuoka M, Ogawa M (2010) J Am Chem Soc 132:16762–16764

    Article  CAS  Google Scholar 

  15. Zhang Q, Lima DQ, Lee I, Zaera F, Chi M, Li Y (2011) Angew Chem Int Ed 123:7226–7230

    Article  Google Scholar 

  16. Chen YZ, Zeng DQ, Zhang K, Lu AL, Wang LS, Peng DL (2014) Nanoscale 6:874–881

    Article  CAS  Google Scholar 

  17. Zhang XL, Li Y, Zhao JL, Wang SG, Li YD, Dai HT, Sun XW (2014) J Power Sources 269:466–472

    Article  CAS  Google Scholar 

  18. Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X (2008) Adv Funct Mater 18:2348–2355

    Article  CAS  Google Scholar 

  19. Zhang S, Ni W, Kou X, Yeung M, Sun L, Wang J, Yan CA (2007) Adv Funct Mater 17:3258–3266

    Article  CAS  Google Scholar 

  20. Zhou MJ, Yi Z, Li K, Zhang JC, Wu WD (2011) Nanoscale Res Lett 6:506

    Article  Google Scholar 

  21. Chen LM, Luo LB, Chen ZH, Zhang ML, Zapien JA, Lee CS, Lee ST (2010) J Phys Chem C 114:93–100

    Article  CAS  Google Scholar 

  22. Udawatte N, Lee M, Kim J, Lee D (2011) ACS Appl Mater Interfaces 3:4531–4538

    Article  CAS  Google Scholar 

  23. Yi Z, Li XB, Luo JS, Yi Y, Xu XB, Wu PH, Jiang XD, Wu WD, Yi YG, Tang YJ (2014) Plasmonics 9:375–379

    Article  CAS  Google Scholar 

  24. Liu XY, Liu MH, Luo YC, Mou CY, Lin SD, Cheng HK, Chen JM, Lee JF, Lin TS (2012) J Am Chem Soc 134:10251–10258

    Article  CAS  Google Scholar 

  25. Lee MK, Kim TG, Kim W, Sung YM (2008) J Phys Chem C 112:10079–10082

    Article  CAS  Google Scholar 

  26. Kochuveedu ST, Oh JH, Do YR, Kim DH (2012) Chem Eur J 18:7467–7472

    Article  CAS  Google Scholar 

  27. Im JS, Singh J, Soares JW, Steeves DM, Whitten JE (2011) J Phys Chem C 115:10518–10523

    Article  CAS  Google Scholar 

  28. Han WH, Zhou YS, Zhang Y, Chen CY, Lin L, Wang X, Wang SH, Wang ZL (2012) ACS Nano 6:3760–3766

    Article  CAS  Google Scholar 

  29. Kohan AF, Ceder G, Morgan D, Walle CGV (2000) Phys Rev B 61:15019

    Article  CAS  Google Scholar 

  30. Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) J Phys Chem B 104:1715–1723

    Article  Google Scholar 

  31. Lin HY, Cheng CL, Chou YY, Huang LL, Chen YF, Tsen KT (2006) Opt Express 14:2372–2379

    Article  CAS  Google Scholar 

  32. Pyne S, Sahoo GP, Bhui DK, Bar H, Sarkar P, Samanta S, Maity A, Misra A (2012) Spectrochim Acta A 93:100–105

    Article  CAS  Google Scholar 

  33. Peralta MD, Pal U, Zeferino RS (2012) ACS Appl Mater Interfaces 4:4807–4816

    Article  Google Scholar 

  34. Kochuveedu ST, Kim DP, Kim DH (2012) J Phys Chem C 116:2500–2506

    Article  CAS  Google Scholar 

  35. Zheng ZK, Huang BB, Qin XY, Zhang XY, Dai YY, Whang MH (2011) J Mater Chem 21:9079–9087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (No. 10804101; 60908023; 11375159), Science and Technology Development Foundation of Chinese Academy of Engineering Physics (No. 2010B0401055), Open Foundation of Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, CAEP (No. 12zxjk07), the Research Fund for the Doctoral Program of Southwest University of Science and Technology (No. 14zx7144).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Yi or Yougen Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Chen, J., Luo, J. et al. Surface-Plasmon-Enhanced Band Emission and Enhanced Photocatalytic Activity of Au Nanoparticles-Decorated ZnO Nanorods. Plasmonics 10, 1373–1380 (2015). https://doi.org/10.1007/s11468-015-9933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9933-2

Keywords

Navigation