Skip to main content
Log in

Studies of Electronic Excitations of Rectangular ZnO Nanorods by Electron Energy-Loss Spectroscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Electronic excitations of single ZnO rectangular nanorod have been investigated by electron energy-loss spectroscopy in conjunction with scanning transmission electron microscopy (STEM-EELS). We focus primarily on the surface excitations greatly enhanced at the grazing incidence parallel to the surfaces of ZnO nanorods. An uncommon kind of surface excitation known as surface exciton polaritons occurring near interband transitions is found to dominate in the spectral range between the band gap at 3.4 eV and the surface plasmon peak at 15.8 eV. In addition, the dielectric function of ZnO up to 25 eV has also been derived from the bulk excitation spectra using the Kramers–Kronig analysis on a single nanorod. Theoretical EELS simulations are also compared with the experimental results and good agreements are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vispute RD, Talyansky V, Choopun S et al (1998) Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett 73:348–350

    Article  CAS  Google Scholar 

  2. Naik RS, Lutsky JJ, Reif R et al (1998) Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator. IEEE Trans Ultrason Ferroelectr Freq Control 45:257–263

    Article  CAS  Google Scholar 

  3. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  CAS  Google Scholar 

  4. Chen YF, Bagnall D, Yao TF (2000) ZnO as a novel photonic material for the UV region. Mater Sci Eng B 75:190–198

    Article  Google Scholar 

  5. Gorla CR, Emanetoglu NW, Liang S et al (1999) Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01–12) sapphire by metalorganic chemical vapor deposition. J Appl Phys 85:2595–2602

    Article  CAS  Google Scholar 

  6. Verardi P, Nastase N, Gherasim C et al (1999) Scanning force microscopy and electron microscopy studies of pulsed laser deposited ZnO thin films: application to the bulk acoustic waves (BAW) devices. J Cryst Growth 197:523–528

    Article  CAS  Google Scholar 

  7. Liu SC, Wu JJ (2002) Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100). J Mater Chem 12:3125–3129

    Article  CAS  Google Scholar 

  8. Yang PD, Yan HQ, Mao S et al (2002) Controlled growth of ZnO nanowires and their optical properties. Adv Funct Mater 12:323–331

    Article  CAS  Google Scholar 

  9. Huang MH, Mao S, Feick H et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  10. Hengehold RL, Almassy RJ, Pedrotti FL (1970) Electron energy-loss and ultraviolet-reflectivity spectra of crystalline ZnO. Physical Review B 1:4784

    Article  Google Scholar 

  11. Dorn R, Luth H, Buchel M (1977) Electronic surface and bulk transitions on clean ZnO surfaces studied by electron energy-loss spectroscopy. Physical Review B 16:4675–4683

    Article  CAS  Google Scholar 

  12. Wang J, An XP, Li Q et al (2005) Size-dependent electronic structures of ZnO nanowires. Appl Phys Lett 86:201911

    Article  Google Scholar 

  13. Zhang ZH, Qi XY, Han JK et al (2006) Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy. Micron 37:229–233

    Article  CAS  Google Scholar 

  14. Wang J, Li Q, Egerton RF (2007) Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy. Micron 38:346–353

    Article  CAS  Google Scholar 

  15. Yang F, Sambles JR, Bradberry GW (1990) Long-range coupled surface exciton polaritons. Phys Rev Lett 64:559–562

    Article  CAS  Google Scholar 

  16. Yang F, Sambles JR, Bradberry GW (1991) Long-range surface modes supported by thin films. Physical Review B 44:5855

    Article  Google Scholar 

  17. Chu MW, Chen CH, De Abajo FJG et al (2008) Surface exciton polaritons in individual Au nanoparticles in the far-ultraviolet spectral regime. Physical Review B 77:245402

    Article  Google Scholar 

  18. Liou SC, Chu MW, Lee YJ et al (2009) Surface exciton polariton in monoclinic HfO2: an electron energy-loss spectroscopy study. New J Phys 11:103009

    Article  Google Scholar 

  19. Wu C-T, Chu M-W, Chen L-C et al (2010) Spectroscopic characterizations of individual single-crystalline GaN nanowires in visible/ultra-violet regime. Micron 41:827–832

    Article  Google Scholar 

  20. Reimer L (1995) Energy-filtering transmission electron microscopy. Springer Series in Optical Sciences, New York

    Google Scholar 

  21. Kuo CL, Wang RC, Liu CP et al (2008) Composition fluctuation induced growth of Al: ZnO rectangular nanorod arrays. Nanotechnology 19:035605

    Article  Google Scholar 

  22. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Plenum Press, New York

    Google Scholar 

  23. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  CAS  Google Scholar 

  24. Kroger E (1968) Calculations of energy losses of fast electrons in thin foils with retardation. Zeitschrift Fur Physik 216:115–135

    Article  Google Scholar 

  25. Daniels J, Festenberg C, Raether H et al (1970) Optical constants of solids by electron spectroscopy. Springer Tr Mod Phys 54:77–135

    Article  CAS  Google Scholar 

  26. Klucker R, Nelkowsk H, Park YS et al (1971) Optical anisotropy of ZnO in ultraviolet region. Physica Status Solidi B-Basic Research 45:265–272

    Article  CAS  Google Scholar 

  27. Freeouf JL (1973) Far-ultraviolet reflectance of II-VI compounds and correlation with the Penn-Phillips gap*. Physical Review B 7:3810

    Article  CAS  Google Scholar 

  28. Yoshikawa H, Adachi S (1997) Optical constants of ZnO. Japanese. Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36:6237–6243

    Article  CAS  Google Scholar 

  29. Jellison GE, Boatner LA (1998) Optical functions of uniaxial ZnO determined by generalized ellipsometry. Physical Review B 58:3586

    Article  CAS  Google Scholar 

  30. Adachi S (1999) Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information. Kluwer, Boston

    Book  Google Scholar 

  31. Stoger-Pollach M, Galek T (2006) Comment on “Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy”. Micron 37:748–750

    Article  CAS  Google Scholar 

  32. Gu L, Srot V, Sigle W et al (2007) Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Physical Review B 75:195214

    Article  Google Scholar 

  33. Mkhoyan KA, Babinec T, Maccagnano SE et al (2007) Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107:345–355

    Article  CAS  Google Scholar 

  34. Stöger-Pollach M, Laister A, Schattschneider P (2008) Treating retardation effects in valence EELS spectra for Kramers–Kronig analysis. Ultramicroscopy 108:439–444

    Article  Google Scholar 

  35. Sun X, Shuai Z, Nasu K et al (1991) Electron interaction and optical gap of conjugated polymers. Physical Review B 44:11042

    Article  CAS  Google Scholar 

  36. Egerton RF (2003) New techniques in electron energy-loss spectroscopy and energy-filtered imaging. Micron 34:127–139

    Article  CAS  Google Scholar 

  37. Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586

    Article  CAS  Google Scholar 

  38. Kimoto K, Asaka T, Nagai T et al (2007) Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702–704

    Article  CAS  Google Scholar 

  39. Bolton JPR, Chen M (1995) Electron energy loss in multilayered slabs. Ultramicroscopy 60:247–263

    Article  CAS  Google Scholar 

  40. Bolton JPR, Chen M (1995) Electron-energy-loss in multilayered slabs.2. Parallel incidence. J Phys Condens Matter 7:3389–3403

    Article  CAS  Google Scholar 

  41. Aizpurua J, Rafferty B, De Abajo FJG et al (1997) Numerical simulation of valence losses in MgO cubes. In: Rodenburg JM (ed) Electron microscopy and analysis. Iop Publishing Ltd, Bristol, pp 277–280

    Google Scholar 

  42. García De Abajo FJ, Aizpurua J (1997) Numerical simulation of electron energy loss near inhomogeneous dielectrics. Physical Review B 56:15873

    Article  Google Scholar 

  43. De Abajo FJG, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Physical Review B 65:115418

    Article  Google Scholar 

  44. Taniyasu Y, Kasu M, Makimoto T (2006) An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council under the project of NSC 96-2121-M-002-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsuan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CT., Chu, MW., Liu, CP. et al. Studies of Electronic Excitations of Rectangular ZnO Nanorods by Electron Energy-Loss Spectroscopy. Plasmonics 7, 123–130 (2012). https://doi.org/10.1007/s11468-011-9284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9284-6

Keywords

Navigation