Skip to main content
Log in

Quantum Nonlocal Polarizability of Metallic Nanowires

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An explicit calculation of the quantum nonlocal polarizability of a metallic nanowire is presented. The modification of the standard approach due to quantum nonlocal effects is included by employing the quantum hydrodynamic description of the electron density a well as the appropriate additional quantum boundary conditions. In the presence of the quantum tunneling effects, the main polarizability peak, due to the surface plasmon, blueshifted from its classical position and subsidiary peaks, due to the excitation of bulk plasmons, appear above the bulk plasma frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aerst GC, Boardman AD, Paranjapet BV (1980) Non-radiative surface plasma-polariton modes of inhomogeneous metal circular cylinders. J Phys F: Metal Phys 10:53–65

    Article  Google Scholar 

  2. Ruppin R (1989) Optical properties of a spatially dispersive cylinder. J Opt Soc Am B 6:1559–1563

    Article  CAS  Google Scholar 

  3. Ruppin R (2001) Extinction properties of thin metallic nanowires. Opt Commun 190:205–209

    Article  CAS  Google Scholar 

  4. Boustimi M, Baudon J, Feron P, Robert J (2003) Optical properties of metallic nanowires. Opt Commun 220:377–381

    Article  CAS  Google Scholar 

  5. Aizpurua J, Rivacoba A (2008) Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams. Phys Rev B 78:035404

    Article  Google Scholar 

  6. Villo-Perez I, Arista NR (2009) Hydrodynamical model for bulk and surface plasmons in cylindrical wires. Surf Sci 603:1–13

    Article  CAS  Google Scholar 

  7. McMahon JM, Gray SK, Schatz GC (2010) Nonlocal dielectric effects in core-shell nanowires. J Phys Chem C 114:15903–15908

    Article  CAS  Google Scholar 

  8. Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA (2011) Unusual resonances in nanoplasmonic structures due to nonlocal response. Phys Rev B 84:121412

    Article  Google Scholar 

  9. Toscano G, Raza S, Jauho A-P, Mortensen NA, Wubs M (2012) Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt Express 20:4176–4188

    Article  CAS  Google Scholar 

  10. Raza S, Toscano G, Jauho A-P, Mortensen NA, Wubs M (2013) Refractive-index sensing with ultra-thin plasmonic nanotubes. Plasmonics 8:193–199

    Article  CAS  Google Scholar 

  11. Hewageegana P (2013) Electrostatics of a nanowire including nonlocal effects. PIER Lett 39:27–36

    Article  Google Scholar 

  12. Ciraci C, Pendry JB, Smith DR (2013) Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem. Chem Phys Chem 14:1109–1116

    CAS  Google Scholar 

  13. Moradi A, Ebrahimi E (2014) Plasmon spectra of cylindrical nanostructures including nonlocal effects. Plasmonics 9:209–218

    Article  CAS  Google Scholar 

  14. Li L-Sh, Yin H-Ch (2014) Fano-like resonance in cylinders including nonlocal effects. Chin Phys Lett 31:087302

    Article  Google Scholar 

  15. Mortensen NA, Raza S, Wubs M, Sndergaard T, Bozhevolnyi SI (2014) A generalized nonlocal optical response theory for plasmonic nanostructures. Nat Commun 5:3809

    CAS  Google Scholar 

  16. Ciraci C, Hill RT, Mock JJ, Urzhumov Y, Fernandez-Dominguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of plasmonic enhancement. Science 337:1072

    Article  CAS  Google Scholar 

  17. David C, de Abajo FJG (2011) Spatial nonlocality in the optical response of metal nanoparticles. J Phys Chem C 115:19470–19475

    Article  CAS  Google Scholar 

  18. Wiener A, Fernandez-Dominguez AI, Horsfield AP, Pendry JB, Maier SA (2012) Nonlocal effects in the nanofocusing performance of plasmonic tips. Nano Lett 12:3308–3314

    Article  CAS  Google Scholar 

  19. Raza S, Christensen T, Wubs M, Bozhevolnyi SI, Mortensen NA (2013) Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity. Phys Rev B 88:115401

    Article  Google Scholar 

  20. Zhang Y-Y, An S-B, Song Y-H, Kang N, Miskovic ZL, Wang Y-N (2014) Plasmon excitation in metal slab by fast point charge: the role of additional boundary conditions in quantum hydrodynamic model. Phys Plasmas 21:102114

    Article  Google Scholar 

  21. Moradi A (2015) Surface plasmon oscillations on a quantum plasma half-space. Phys Plasmas 22:014501

    Article  Google Scholar 

  22. Moradi A (2015) Quantum nonlocal effects on optical properties of spherical nanoparticles. Phys Plasmas 22:022119

    Article  Google Scholar 

  23. Moradi A (2015) Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film. Phys Lett A 379:1139

  24. Novotny L, Hecht B (2006) Principles of nano-Optics. Cambridge University Press, New York

    Book  Google Scholar 

  25. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  26. Raza S, Yan W, Stenger N, Wubs M, Mortensen NA (2013) Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. Opt Express 21:27344–27355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Moradi.

Additional information

Conflict of Interests

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A. Quantum Nonlocal Polarizability of Metallic Nanowires. Plasmonics 10, 1225–1230 (2015). https://doi.org/10.1007/s11468-015-9924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9924-3

Keywords

Navigation