Skip to main content
Log in

Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, van Duyne RP (2008) Nat Mater 7:442

    Article  CAS  Google Scholar 

  2. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419

    Article  CAS  Google Scholar 

  3. Brongersma ML (2003) Nat Mater 2:296

    Article  CAS  Google Scholar 

  4. Raschke G, Brogl S, Susha AS, Rogach AL, Klar TA, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kürzinger K (2004) Nano Lett 4:1853

    Article  CAS  Google Scholar 

  5. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355

    Article  CAS  Google Scholar 

  6. Tam F, Moran C, Halas NJ (2004) J Phys Chem B 108:17290

    Article  CAS  Google Scholar 

  7. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Acc Chem Res 44:936

    Article  CAS  Google Scholar 

  8. Prodan E, Nordlander P (2004) J Chem Phys 120:5444

    Article  CAS  Google Scholar 

  9. David C, García de Abajo FJ (2011) J Phys Chem C 115:19470

    Article  CAS  Google Scholar 

  10. Toscano G, Raza S, Jauho A-P, Mortensen NA, Wubs M (2012) Opt Express 20:4176

    Article  CAS  Google Scholar 

  11. Boardman AD, Paranjape BV (1977) J Phys F: Met Phys 7:1935

    Article  CAS  Google Scholar 

  12. Dasgupta BB, Fuchs R (1981) Phys Rev B 24:554

    Article  CAS  Google Scholar 

  13. Ruppin R (1973) Phys Rev Lett 31:1434

    Article  Google Scholar 

  14. Raza S, Toscano G, Jauho A-P, Wubs M, Mortensen NA (2011) Phys Rev B 84:121412(R)

    Google Scholar 

  15. Jones WE, Kliewer KL, Fuchs R (1969) Phys Rev 178:1201

    Article  Google Scholar 

  16. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Höök F, Zayats AV, Pollard RJ (2010) ACS Nano 4:2210

    Article  CAS  Google Scholar 

  17. Lim MA, Kim DH, Park CO, Lee YW, Han SW, Li Z, Williams RS, Park I (2012) ACS Nano 6:598

  18. Schröter U, Dereux A (2001) Phys Rev B 64:125420

    Article  Google Scholar 

  19. Zhu J, Li KF (2011) Eur Phys J B 80:83

    Article  CAS  Google Scholar 

  20. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Appl Opt 37:5271

    Article  Google Scholar 

  21. Fuchs R, Claro F (1987) Phys Rev B 35:3722

    Article  Google Scholar 

  22. Mayer KM, Hafner JH (2011) Chem Rev 111:3828

    Article  CAS  Google Scholar 

  23. Mahmoud MA, El-Sayed MA (2010) J Am Chem Soc 132:12704

    Article  CAS  Google Scholar 

  24. Jeppesen C, Xiao S, Mortensen NA, Kristensen A (2010) Opt Express 18:25075

    Article  CAS  Google Scholar 

  25. Ruppin R (2001) Opt Commun 190:205

    Article  CAS  Google Scholar 

  26. Zuloaga J, Prodan E, Nordlander P (2009) Nano Lett 9:887

    Article  CAS  Google Scholar 

  27. Öztürk ZF, Xiao S, Yan M, Wubs M, Jauho A-P, Mortensen NA (2011) J Nanophotonics 5:051602

    Article  Google Scholar 

  28. van de Hulst H (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren Raza.

Appendix

Appendix

The nonlocal optical properties of the nanotube are determined by solving Maxwell’s wave equation coupled to the hydrodynamic equation for the current [14]. We solve the coupled set of equations by extending the Mie theory for wires of Ref. [25] to core–shell structures. By expanding the electromagnetic fields in the dielectric core, metal shell, and surrounding medium in cylindrical Bessel functions, we can most easily take into account Maxwell’s boundary conditions along with the additional boundary condition of a vanishing normal component of the current in the nonlocal case [14]. Although quantum tunneling is not taken into account with this treatment, we do not expect any such effects to be important in this structure [26, 27].

To determine the extinction property of the infinite cylindrical nanotube we calculate the extinction cross section [28]

$$ \sigma_\text{ext} = -\frac{2}{k_0r_2} \sum\limits_{n=-\infty}^{\infty} {\rm Re}\{a_n\}, $$
(2)

where \(k_0=\sqrt{\epsilon_\text{b}} \omega/c\) is the background wave vector, \(\epsilon_\text{b}\) is the background permittivity, and a n is a cylindrical Bessel-function expansion coefficient for the scattered electromagnetic field. We consider a normally incident electric-field polarization perpendicular to the cylinder axis (TM), as sketched in the inset of Fig. 1. The nonlocal-response scattering coefficient is calculated analytically as

$$ a_n=-\frac{\sqrt{\epsilon_\text{b}} J_n(k_0 r_2) \left[C_n + J_n^\prime P_n - H_n^\prime Q_n\right] - \sqrt{\epsilon} J_n^\prime(k_0 r_2) \left[J_n P_n - H_n Q_n\right]} {\sqrt{\epsilon_\text{b}} H_n(k_0 r_2) \left[C_n+ J_n^\prime P_n - H_n^\prime Q_n\right] - \sqrt{\epsilon} H_n^\prime(k_0 r_2) \left[J_n P_n - H_n Q_n\right]}. $$
(3)

Here, J n and H n are the Bessel and Hankel functions of the first kind, \(k_\text{t} = \sqrt{\epsilon} \omega/c\), and \(\epsilon(\omega)=\epsilon_\text{other}(\omega) - \omega_\text{p}^2/(\omega[\omega+i\gamma])\) is the Drude local-response function that includes interband effects through \(\epsilon_\text{other}(\omega)\). The arguments of the Bessel and Hankel functions are \(k_\text{t} r_2\) unless written explicitly otherwise.

The coefficients P n , Q n , and C n are given by

$$ P_n = p_n \alpha_n + J_n(k_\text{c}r_1) \left[H_n(k_\text{t}r_1) \delta_n + H_n \tau_n \right], $$
(4)
$$ Q_n = q_n \alpha_n + J_n(k_\text{c}r_1) \left[J_n(k_\text{t}r_1) \delta_n + J_n \tau_n \right], $$
(5)
$$ C_n = \frac{i n}{k_0 r_2} \left[ H_n(k_\text{l}r_2) c_n - J_n(k_\text{l}r_2) d_n \right], $$
(6)

where \(k_\text{c} = \sqrt{\epsilon_\text{c}} \omega/c\) and \(\epsilon_\text{c}\) is the dielectric constant of the core. Furthermore, \(k_\text{l}^2=(\omega^2+i\omega\gamma-\omega_\text{p}^2/\epsilon_\text{other})/\beta^2\) and \(\beta^2=3 v_\text{F}^2/5\) with \(v_\text{F}\) being the Fermi velocity of the metal shell. The coefficients p n , q n , α n , δ n and τ n of Eqs. (45) are given as

$$ p_n = \sqrt{\epsilon} J_n^\prime(k_\text{c} r_1) H_n(k_\text{t} r_1) - \sqrt{\epsilon_\text{c}} J_n(k_\text{c} r_1) H_n^\prime(k_\text{t} r_1), $$
(7)
$$ q_n = \sqrt{\epsilon} J_n^\prime(k_\text{c} r_1) J_n(k_\text{t} r_1) - \sqrt{\epsilon_\text{c}} J_n(k_\text{c} r_1) J_n^\prime(k_\text{t} r_1). $$
(8)
$$\begin{array}{rll} \alpha_n &=& \left(\frac{k_\text{l} \epsilon_\text{other}}{k_0}\right)^2 \\ &&\times\left[J_n^\prime(k_\text{l}r_2) H_n^\prime(k_\text{l}r_1)-H_n^\prime(k_\text{l}r_2)J_n^\prime(k_\text{l}r_1) \right], \end{array}$$
(9)
$$\begin{array}{rll} \delta_n &=& -\frac{k_\text{l}n^2 \sqrt{\epsilon_\text{c}} \epsilon_\text{other} (\epsilon-\epsilon_\text{other})}{k_\text{t}k_0^2 r_1^2}\\ &&\times\left[ J_n^\prime(k_\text{l}r_2) H_n(k_\text{l}r_1)- H_n^\prime(k_\text{l}r_2) J_n(k_\text{l} r_1) \right], \end{array}$$
(10)
$$\begin{array}{rll} \tau_n &=& -\frac{k_\text{l}n^2 \sqrt{\epsilon_\text{c}} \epsilon_\text{other} (\epsilon-\epsilon_\text{other})}{k_\text{t}k_0^2 r_1 r_2} \\ &&\times\left[ H_n^\prime(k_\text{l}r_1) J_n(k_\text{l}r_1)- J_n^\prime(k_\text{l}r_1) H_n(k_\text{l} r_1) \right], \end{array}$$
(11)

while the coefficients c n and d n of Eq. (6) are given as

$$\begin{array}{rll} c_n &=&f_n \left[ J_n^\prime(k_\text{l}r_2) \eta_n + J_n(k_\text{l} r_1) \kappa_n \right]\\ &&+\; J_n^\prime(k_\text{l}r_1) g_n \left[ J_n p_n - H_n q_n \right], \end{array}$$
(12)
$$\begin{array}{rll} d_n &=&f_n \left[ H_n^\prime(k_\text{l}r_2) \eta_n + H_n(k_\text{l} r_1) \kappa_n \right]\\ &&+\; H_n^\prime(k_\text{l}r_1) g_n \left[ J_n p_n - H_n q_n \right], \end{array}$$
(13)

where

$$ g_n = \frac{ink_\text{l} \epsilon_\text{other}(\epsilon-\epsilon_\text{other})}{k_0 k_\text{t} r_2}, $$
(14)
$$ f_n = \frac{in\sqrt{\epsilon_\text{c}} (\epsilon-\epsilon_\text{other})}{k_0 k_\text{t} r_1} J_n(k_\text{t} r_1), $$
(15)
$$ \eta_n = k_\text{l} \left[ J_n(k_\text{t}r_1) H_n^\prime(k_\text{t}r_1) - H_n(k_\text{t} r_1) J_n^\prime(k_\text{t} r_1) \right], $$
(16)
$$ \kappa_n = \frac{n^2 (\epsilon-\epsilon_\text{other})}{k_\text{t} r_2 r_1} \left[ J_n(k_\text{t}r_1) H_n - H_n(k_\text{t}r_1) J_n \right]. $$
(17)

The local-response result can be retrieved in the limit of a vanishing Fermi velocity for which P n  = p n , Q n  = q n , and C n  = 0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raza, S., Toscano, G., Jauho, AP. et al. Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes. Plasmonics 8, 193–199 (2013). https://doi.org/10.1007/s11468-012-9375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9375-z

Keywords

Navigation