Skip to main content
Log in

Impedance Conditions in Metal Nanowires

  • NANOELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Approximate equations for the conductivity of metal nanowires of finite width and finite thickness and finite-thickness films are obtained in the context of the Landauer–Datta–Lundstrom model. The equations go over to the known limiting cases and are convenient for determining the conductivity of nanostructures considering both transverse dimensions. Approximate potential distribution and functionals for solving the corresponding Schrödinger equation are proposed to calculate the number of conduction modes of quantum wires of finite transverse dimensions. The number of energy levels is calculated. The solution to the problem of a Zenneck–Sommerfeld wave in a rectangular wire, which transforms into a surface plasmon at high frequencies, is considered. The solution significantly depends on the change in the plasma frequency associated with transverse dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. A. Belov, R. Marques, S. I. Maslovski, et al., Phys. Rev. B 63, 113103 (2003).

    Article  Google Scholar 

  2. I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E 71, 046612 (2005).

    Article  Google Scholar 

  3. I. S. Nefedov and A. J. Viitanen, Metamaterials Handbook: Theory and Phenomena of Metamaterials, Ed. by F. Gapolino, (CRC Press, Taylor & Francis Group, Boca Raton, 2009), pp. 1–15.

  4. I. S. Nefedov, Phys. Rev. B 82, 155423 (2010).

    Article  Google Scholar 

  5. I. Nefedov and S. Tretyakov, Phys. Rev. B 84, 113410 (2011).

    Article  Google Scholar 

  6. I. S. Nefedov and C. R. Simovski, Phys. Rev. B 84, 195459 (2011).

    Article  Google Scholar 

  7. I. S. Nefedov and S. A. Tretyakov, “Photonics and Nanostructures,” Photon. & Nanostruct. – Fundam. Appl. 9, 374 (2011).

    Google Scholar 

  8. I. Liberal, I. S. Nefedov, I. Ederra, et al., J. Appl. Phys. 110, 104902 (2011).

    Article  Google Scholar 

  9. M. G. Silveirinha and C. A. Fernandes, IEEE Trans. 4, 1418 (2005).

    Google Scholar 

  10. M. V. Davidovich and I. S. Nefedov, Zh. Eksp. Teor. Fiz. 145, 771 (2014).

    Article  Google Scholar 

  11. M. V. Davidovich, J. V. Stephuk, and P. A. Shilovskii, Tech. Phys. 57, 320 (2012).

    Article  Google Scholar 

  12. M. V. Davidovich and P. A. Shilovskii, Tech. Phys. 57, 1687 (2012).

    Article  Google Scholar 

  13. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, Adv. Optoelectron. 452502, 1 (2012).

    Google Scholar 

  14. P. Shekhar, J. Atkinson, and Z. Jacob, Nano Convergence 1, 1 (2014).

    Article  Google Scholar 

  15. A. P. Vinogradov, A. I. Ignatov, A. M. Merzlikin, et al., Opt. Express 19, 6699 (2011).

    Article  Google Scholar 

  16. C. J. Zapata-Rodríguez, J. J. Miret, S. Vuković, and M. R. Belić, Opt. Express 21, 19113 (2013).

  17. I. S. Nefedov, C. A. Valagiannopoulos, and L. Melnikov, J. Opt. 15, 114003 (2013).

    Article  Google Scholar 

  18. S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99 (1), 016803 (2007).

    Article  Google Scholar 

  19. M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, IEEE ED Lett. 28, 282 (2007).

    Article  Google Scholar 

  20. Z. Chen, Yu-M. Lin, M. J. Rooks, and P. Avouris, Physica E: Low-Dimens. Syst. & Nanostruct. 40, 213 (2007).

    Article  Google Scholar 

  21. D. A. Svintsov, V. V. Vyurkov, V. F. Lukichev, A. A. Orlikovsky, A. Burenkov, and R. Oechsner, Semiconductors 47, 279 (2013).

    Article  Google Scholar 

  22. R. Landauer, IBM J. Res. and Develop. 1, 223 (1957).

    Article  MathSciNet  Google Scholar 

  23. R. Landauer, Philos. Mag. 21, 863 (1970).

    Article  Google Scholar 

  24. R. Landauer, J. Math. Phys. 37 (10), 5259 (1996).

    Article  MathSciNet  Google Scholar 

  25. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  26. S. Datta, Quantum Transport: Atom to Transistor (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  27. S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (World Sci. Publ. Comp., Hackensack, NJ, 2012).

    Book  MATH  Google Scholar 

  28. M. Lundstrom and C. Jeong, Near-Equilibrium Transport: Fundamentals and Applications, World Sci. Publ. Comp., Hackensack, N. J., 2013).

    Book  MATH  Google Scholar 

  29. Yu. A. Kruglyak, Nanosyst., Nanomater., Nanotech. 11, 519 (2013).

    Google Scholar 

  30. Yu. Kruglyak, J. Nanosci, Article ID 725420, 1 (2014).

    Google Scholar 

  31. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, Phys. Rev. B 87, 115429 (2013).

    Article  Google Scholar 

  32. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

    Article  Google Scholar 

  33. E. H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  Google Scholar 

  34. A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).

    Article  Google Scholar 

  35. C. R. Tellier and A. J. Tosser, Size Effects in Thin Films (Elsevier, Amsterdam, 1982).

  36. F. Warkusz, Prog. Surf. Sci. 10, 287 (1980).

    Article  Google Scholar 

  37. Y. Namba, Jpn. J. Appl. Phys. 9, 1326 (1970).

    Article  Google Scholar 

  38. R. C. Munoz, R. Finger, C. Arenas, et al., Phys. Rev. B 66, 205401-9 (2002).

    Article  Google Scholar 

  39. P. J. Feibelman, Phys. Rev. B 27, 1991 (1983).

    Article  Google Scholar 

  40. J. C. Boettger and S. B. Trickey, Phys. Rev. B 45, 1363 (1992).

    Article  Google Scholar 

  41. V. P. Kurbatsky and V. V. Pogosov, Vacuum 74, 185 (2004).

    Article  Google Scholar 

  42. V. B. Sandomirskii, J. Commun. Technol. Electron. 12, 158 (1967).

    Google Scholar 

  43. I. M. Lifshits and A. M. Kosevich, Izv. AN SSSR Ser. Fiz. 19, 395 (1955).

    Google Scholar 

  44. Yu. F. Ogrin, V. N. Lutskii, and M. I. Elinson, Pis’ma Zh. Eksp. Teor. Fiz. 3 (3), 114 (1966).

    Google Scholar 

  45. S. Tanachutiwat and W. Wang, in Proc. Third Int. ICST Conf. NanoNet, Boston, MA, USA, 2008 (Boston, 2008), p. 49.

  46. R. Munoz, C. Arenas, G. Kremer, and L. Moraga, J. Phys. Condens. Matter 15, 177 (2003).

    Article  Google Scholar 

  47. H. Hoffman and G. Fisher, Thin Solid Films 36, 25 (1976).

    Article  Google Scholar 

  48. G. Fisher and H. Hoffman, Solid State Commun. 35, 793 (1980).

    Article  Google Scholar 

  49. G. Fisher and H. Hoffman, Z. Phys. B: Condens. Matter 39, 287 (1980).

    Article  Google Scholar 

  50. Z. V. Stasyuk, J. Phys. Studies 3 (1), 102 (1999).

    Article  Google Scholar 

  51. R. I. Bigun, Z. V. Stasyuk, M. Yu. Barabash, and Yu. A. Kunitskii, Khim., Fiz. & Tekhnol. Poverkhn. 1, 128 (2010).

    Google Scholar 

  52. Yu. A. Kruglyak, Sci. J. Science Rise 2/2 (7), 77 (2015).

  53. T. Ragheb and Y. Massoud, in Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD 2008) 2008, p. 593.

  54. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).

    Article  Google Scholar 

  55. G. Ya. Slepyan, S. A. Maksimenko, L. Lakhtakia, et al., Phys. Rev. B 60, 17136 (1999).

    Article  Google Scholar 

  56. L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76, 153410 (2007).

    Article  Google Scholar 

  57. Z. Tešanović, M. Jarić, and S. Maekawa, Phys. Rev. Lett. 57 (21), 2760 (1986).

    Article  Google Scholar 

  58. Z. Tesanović, J. Phys. C: Solid State Phys. 20, 829 (1987).

    Article  Google Scholar 

  59. N. Trivedi and N. W. Ashcroft, Phys. Rev. B 38 (17), 12298 (1988).

    Article  Google Scholar 

  60. G. Fishman and D. Calecki, Phys. Rev. Lett. 62 (11), 1302 (1989).

    Article  Google Scholar 

  61. L. Sheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. B 51 (11), 7325 (1995).

    Article  Google Scholar 

  62. R. Munoz, G. Vidal, G. Kremer, et al., J. Phys. Condens. Matter 11 (26), 299 (1999).

    Article  Google Scholar 

  63. N. M. Makarov, A. V. Moroz, and V. A. Yampolskii, Phys. Rev. B 52 (8), 6087 (1995).

    Article  Google Scholar 

  64. N. M. Makarov and Yu. V. Tarasov, Phys. Rev. B 64, 235306 (2001).

    Article  Google Scholar 

  65. F. M. Izrailev, N. M. Makarov, and M. Rendon, Phys. Rev. B 72, 041403 (2005).

    Article  Google Scholar 

  66. A. E. Meyerovich and A. E. Meyerovich, Phys. Rev. B 65, 155413 (2002).

    Article  Google Scholar 

  67. A. E. Meyerovich and S. Stepaniants, Phys. Rev. Lett. 73, 316 (1994).

    Article  Google Scholar 

  68. A. E. Meyerovich and Y. Cheng, Phys. Rev. B 73 085404 (2006).

    Article  Google Scholar 

  69. J. D. Renteria, D. L. Nika, and A. A. Balandin, Appl. Sci. 4, 525 (2014).

    Article  Google Scholar 

  70. G. S. Ivanchenko and Yu. V. Nevzorova, Vestn. Volgogr. Gos. Univ., Ser. 1: Mat. Fiz. 2 (15), 133 (2011).

    Google Scholar 

  71. K. Nakada and M. Fujita, Phys. Rev. B 54 (24), 17954 (1996).

    Article  Google Scholar 

  72. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, (Fizmatlit, Moscow, 1963; Pergamon, New York, 1977).

  73. M. V. Davidovich, R. K. Yafarov, and D. M. Doronin, in Microwave Engineering and Telecommunication Technologies (Proc. 20th Int. Conf. (CriMiKo’2010), Sevastopol, 2010) (Veber, Sevastopol, 2010), p. 733.

  74. M. V. Davidovich, N. A. Bushuev, and R. K. Yafarov, in Proc. 2014 Tenth Int. Vacuum Electron Sources Conf. and Second Int. Conf. on Emission Electronics, Saint-Petersburg, 2014, p. 67.

  75. E. I. Tamm and D. I. Blokhintsev, Zh. Eksp. Teor. Fiz. 3 (2), 77 (1993).

    Google Scholar 

  76. N. T. T. Tran, S. Y. Lin, M. F. Lin, and O. E. Glukhova, J. Phys. Chem. 119 (19), 10623 (2015).

    Article  Google Scholar 

  77. M. V. Davidovich, Iterative Methods of the Solution of Problems of Electrodynamics (Sarat. Univ., Saratov, 2014).

    Google Scholar 

  78. M. V. Davidovich, in Proc. Int. Conf. Transparent Optical Networks. Kielce, 1999, p. 181.

  79. A. Sommerfeld, Annal. Phys. 303 (2), 233 (1899).

    Article  Google Scholar 

  80. M. V. Davidovich, The Flowing and Following not Own Modes Analysis of the Dissipative Dispersive Equations and Tsennek’s Wave (Sarat. Univ., Saratov, 2014).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation as a part of a state assignment (project no. FSRR-2020-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. Impedance Conditions in Metal Nanowires. J. Commun. Technol. Electron. 66, 853–867 (2021). https://doi.org/10.1134/S1064226921060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921060085

Navigation