Skip to main content
Log in

Heavy flavour physics and CP violation at LHCb: A ten-year review

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Heavy flavour physics provides excellent opportunities to indirectly search for new physics at very high energy scales and to study hadron properties for deep understanding of the strong interaction. The LHCb experiment has been playing a leading role in the study of heavy flavour physics since the start of the LHC operations about ten years ago, and made a range of high-precision measurements and unexpected discoveries, which may have far-reaching implications on the field of particle physics. This review highlights a selection of the most influential physics results on CP violation, rare decays, and heavy flavour production and spectroscopy obtained by LHCb using the data collected during the first two operation periods of the LHC. The upgrade plan of LHCb and the physics prospects are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. O. S. Brüning, et al., LHC Design Report, CERN Yellow Reports: Monographs, CERN, Geneva, 2004

    Google Scholar 

  2. ATLAS Collaboration, G. Aad, et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214

    Article  ADS  Google Scholar 

  3. CMS Collaboration, S. Chatrchyan, et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235

    Article  ADS  Google Scholar 

  4. Webpage: lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html

  5. LHCb Collaboration, A. A. AlvesJr., et al., The LHCb detector at the LHC, J. Instrument. 3, S08005 (2008)

    Google Scholar 

  6. LHCb Collaboration, R. Aaij, et al., Measurement of \(\sigma \left( {pp \to b\bar bX} \right)\) at \(\sqrt s = 7\) TeV in the forward region, Phys. Lett. B 694 (2010) 209, arXiv: 1009.2731

    ADS  Google Scholar 

  7. LHCb Collaboration, R. Aaij, et al., Measurement of J/ψ production in pp collisions at \(\sqrt s = 7\) TeV, Eur. Phys. J. C 71 (2011) 1645, arXiv: 1103.0423

    Article  Google Scholar 

  8. LHCb Collaboration, R. Aaij, et al., Production of J/ψ and ϒ mesons in pp collisions at \(\sqrt s = 8\) TeV, J. High Energy Phys. 06, 064 (2013), arXiv: 1304.6977

    Article  Google Scholar 

  9. LHCb Collaboration, R. Aaij, et al., Prompt charm production in pp collisions at \(\sqrt s = 7\) TeV, Nucl. Phys. B 871 (2013) 1, arXiv: 1302.2864

    Article  ADS  Google Scholar 

  10. LHCb Collaboration, R. Aaij, et al., Measurement of forward J/ψ production cross-sections in pp collisions at \(\sqrt s = 13\) TeV, J. High Energy Phys. 10, 172 (2015), Erratum: J. High Energy Phys. 05, 063 (2017), arXiv: 1509.00771

    Google Scholar 

  11. LHCb Collaboration, R. Aaij, et al., Measurements of prompt charm production cross-sections in pp collisions at \(\sqrt s = 13\) TeV, J. High Energy Phys. 03, 159 (2016), Erratum: J. High Energy Phys. 09, 013 (2016), Erratum: J. High Energy Phys. 05, 074 (2017), arXiv: 1510.01707

    Google Scholar 

  12. LHCb Collaboration, R. Aaij, et al., Measurement of the b-quark production cross-section in 7 and 13 TeV pp collisions, Phys. Rev. Lett. 118, 052002 (2017), Erratum: Phys. Rev. Lett. 119, 169901 (2017), arXiv: 1612.05140

    Article  ADS  Google Scholar 

  13. M. Cacciari, et al., Theoretical predictions for charm and bottom production at the LHC, J. High Energy Phys. 10, 137(2012), arXiv: 1205.6344

    Article  ADS  Google Scholar 

  14. A. Andronic, et al., Heavy-avour and quarkonium production in the LHC era: From proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107, arXiv: 1506.03981

    Article  ADS  Google Scholar 

  15. X.-H. Zhang, F.-H. Liu, and K. K. Olimov, A systematic analysis of transverse momentum spectra of J/ψ mesons in high energy collisions, Int. J. Mod. Phys. E 30, 2150051 (2021), arXiv: 2105.14700

    Article  ADS  Google Scholar 

  16. C.-H. Chen, et al., A study on the exotic state Pc(4312), Pc(4440), Pc(4457) in pp collisions at \(\sqrt s = 7\), 13 GeV, arXiv: 2111.03241 (2021)

  17. A.-P. Chen, Y.-Q. Ma, and H. Zhang, A short theoretical review of charmonium production, arXiv: 2109.04028 (2021)

  18. Q. Wang and F.-H. Liu, Excitation function of initial temperature of heavy avor quarkonium emission source in high energy collisions, Adv. High Energy Phys. 2020, 5031494 (2020), arXiv: 2005.04940

    Article  Google Scholar 

  19. Y.-H. Chen, Y.-G. Ma, G.-L. Ma, and J.-H. Chen, Transverse momentum spectra of J/ψ produced in collisions over an energy range from 17.4 GeV to 13 TeV, J. Phys. G 47, 045111 (2020)

    Article  ADS  Google Scholar 

  20. Y. Yang, S. Cai, Y. Cai, and W. Xiang, Inclusive diffractive heavy quarkonium photoproduction in pp, pA and AA collisions, Nucl. Phys. A 990, 17 (2019), arXiv: 1907.09036

    Article  ADS  Google Scholar 

  21. Z.-G. He, B. A. Kniehl, M. A. Nefedov, and V. A. Saleev, Double prompt J/ψ hadroproduction in the parton Reggeization approach with high-energy resummation, Phys. Rev. Lett. 123, 162002 (2019), arXiv: 1906.08979

    Article  ADS  Google Scholar 

  22. M. Butenschoen and B. A. Kniehl, World data of J/ψ production consolidate NRQCD factorization at NLO, Phys. Rev. D 84, 051501 (2011), arXiv: 1105.0820

    Article  ADS  Google Scholar 

  23. J.-P. Lansberg and H.-S. Shao, Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions, Eur. Phys. J. C 77, 1 (2017), arXiv: 1610.05382

    Article  ADS  Google Scholar 

  24. H.-F. Zhang, Z. Sun, W.-L. Sang, and R. Li, Impact of ηc hadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett. 114, 092006 (2015), arXiv: 1412.0508

    Article  ADS  Google Scholar 

  25. J. P. Ma, J. X. Wang, and S. Zhao, Transverse momentum dependent factorization for quarkonium production at low transverse momentum, Phys. Rev. D 88, 014027 (2013), arXiv: 1211.7144

    Article  ADS  Google Scholar 

  26. Y. Feng, B. Gong, C.-H. Chang, and J.-X. Wang, Remaining parts of the long-standing J/ψ polarization puzzle, Phys. Rev. D 99, 014044(2019), arXiv: 1810.08989

    Article  ADS  Google Scholar 

  27. J.-X. Wang and H.-F. Zhang, hc production at hadron colliders, J. Phys. G 42, 025004 (2015), arXiv: 1403.5944

    Article  ADS  Google Scholar 

  28. Z. Tang, N. Xu, K. Zhou, and P. Zhuang, Charmonium transverse momentum distribution in high energy nuclear collisions, J. Phys. G 41, 124006 (2014), arXiv: 1409.5559

    Article  ADS  Google Scholar 

  29. Q.-F. Sun, Y. Jia, X. Liu, and R. Zhu, Inclusive hcproduction and energy spectrum from e+e annihilation at a super B factory, Phys. Rev. D 98, 014039 (2018), arXiv: 1801.10137

    Article  ADS  Google Scholar 

  30. B.-C. Li, T. Bai, Y.-Y. Guo, and F.-H. Liu, On J/ψ and ϒ transverse momentum distributions in high energy collisions, Adv. High Energy Phys. 2017, 9383540 (2017), arXiv: 1701.04689

    Article  Google Scholar 

  31. H. Han, et al., ηc production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114, 092005(2015), arXiv: 1411.7350

    Article  ADS  Google Scholar 

  32. H. Han, et al., ϒ(nS) and χb(nP) production at hadron colliders in nonrelativistic QCD, Phys. Rev. D 94, 014028 (2016), arXiv: 1410.8537

    Article  ADS  Google Scholar 

  33. P. Zhang, C. Meng, Y.-Q. Ma, and K.-T. Chao, Gluon fragmentation into 3p 1,8]J quark pair and test of NRQCD factorization at two-loop level, J. High Energy Phys. 08, 111(2021), arXiv: 2011.04905

    Article  ADS  Google Scholar 

  34. H.-Y. Liu, Y.-Q. Ma, and K.-T. Chao, Improvement for color glass condensate factorization: Single hadron production in pA collisions at next-to-leading order, Phys. Rev. D 100, 071503 (2019), arXiv: 1909.02370

    Article  ADS  Google Scholar 

  35. Y.-Q. Ma and K.-T. Chao, New factorization theory for heavy quarkonium production and decay, Phys. Rev. D 100, 094007 (2019), arXiv: 1703.08402

    Article  ADS  Google Scholar 

  36. L.-P. Sun, H. Han, and K.-T. Chao, Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, Phys. Rev. D 94, 074033(2016), arXiv: 1404.4042

    Article  ADS  Google Scholar 

  37. Y.-Q. Ma, K. Wang, and K.-T. Chao, A complete NLO calculation of the J/ψ> and ψ′ production at hadron colliders, Phys. Rev. D 84, 114001(2011), arXiv: 1012.1030

    Article  ADS  Google Scholar 

  38. Y.-Q. Ma, K. Wang, and K.-T. Chao, J/ψ(ψ′) production at the Tevatron and LHC at \({\cal O}\left( {\alpha _s^4{v^4}} \right)\) in nonrelativistic QCD, Phys. Rev. Lett. 106, 042002(2011), arXiv: 1009.3655

    Article  ADS  Google Scholar 

  39. B.-Q. Li and K.-T. Chao, Higher charmonia and X, Y, Z states with screened potential, Phys. Rev. D 79, 094004 (2009), arXiv: 0903.5506

    Article  ADS  Google Scholar 

  40. Y.-Q. Ma, K. Wang, and K.-T. Chao, QCD radiative corrections to χcJ production at hadron colliders, Phys. Rev. D 83, 111503 (2011), arXiv: 1002.3987

    Article  ADS  Google Scholar 

  41. Y.-J. Zhang, Y.-Q. Ma, K. Wang, and K.-T. Chao, QCD radiative correction to color-octet J/ψ inclusive production at B factories, Phys. Rev. D 81, 034015 (2010), arXiv: 0911.2166

    Article  ADS  Google Scholar 

  42. H.-S. Shao, HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184, 2562 (2013), arXiv: 1212.5293

    Article  ADS  Google Scholar 

  43. C.-H. Chang and X.-G. Wu, Uncertainties in estimating Bc hadronic production and comparisons of the production at TEVATRON and LHC, Eur. Phys. J. C 38, 267 (2004), arXiv: hep-ph/0309121

    Article  ADS  Google Scholar 

  44. J.-J. Niu, L. Guo, H.-H. Ma, and S.-M. Wang, Heavy quarkonium production through the top quark rare decays via the channels involving flavor changing neutral currents, Eur. Phys. J. C 78, 657 (2018), arXiv: 1808.01231

    Article  ADS  Google Scholar 

  45. K. He, et al., P-wave excited Bc** meson photoproduction at the LHeC, J. Phys. G 45, 055005 (2018), arXiv: 1710.11508

    Article  ADS  Google Scholar 

  46. G. Zhang and B.-Q. Ma, Searching for lepton number violating A baryon decays mediated by a GeV-scale Majorana neutrino with LHCb, Phys. Rev. D 103, 033004 (2021), arXiv: 2101.05566

    Article  ADS  Google Scholar 

  47. G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D 100, 054022 (2019), arXiv: 1903.00722

    Article  ADS  Google Scholar 

  48. Y. Hu, et al., The production of doubly charmed exotic hadrons in heavy ion collisions, arXiv: 2109.07733 (2021)

  49. S. Jia, X. Zhou, and C. Shen, Experimental review of the ϒ(1S, 2S, 3S) physics at e+e colliders and the LHC, Front. Phys. 15, 64301 (2020), arXiv: 2005.05892

    Article  ADS  Google Scholar 

  50. N. Brambilla, et al., The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583

    Article  ADS  Google Scholar 

  51. H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092

    Article  ADS  MathSciNet  Google Scholar 

  52. F.-K. Guo, et al., Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018), arXiv: 1705.00141

    Article  ADS  Google Scholar 

  53. E. S. Swanson, The new heavy mesons: A status report, Phys. Rep. 429 (2006) 243, arXiv: hep-ph/0601110

    Article  ADS  Google Scholar 

  54. S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012

    Article  ADS  MathSciNet  Google Scholar 

  55. Y.-R. Liu, et al., Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976

    Article  ADS  Google Scholar 

  56. H.-X. Chen, et al., A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928

    Article  ADS  Google Scholar 

  57. X. Liu, An overview of XYZ new particles, Chin. Sci. Bull. 59, 3815 (2014), arXiv: 1312.7408

    Article  Google Scholar 

  58. F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030

    Article  Google Scholar 

  59. C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570

    Article  ADS  Google Scholar 

  60. X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, X(3872) and other possible heavy molecular states, Eur. Phys. J. C 61, 411 (2009), arXiv: 0808.0073

    Article  ADS  Google Scholar 

  61. X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-heavy hadronic molecules, Commun. Theor. Phys. 73, 125201 (2021), arXiv: 2108.02673

    Article  ADS  Google Scholar 

  62. R.-X. Shi, Y. Xiao, and L.-S. Geng, Magnetic moments of the spin-1/2 singly charmed baryons in covariant baryon chiral perturbation theory, Phys. Rev. D 100, 054019 (2019), arXiv: 1812.07833

    Article  ADS  Google Scholar 

  63. A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610

    Article  ADS  Google Scholar 

  64. A. Esposito, et al., Four-quark hadrons: An updated review, Int. J. Mod. Phys. A 30, 1530002 (2015), arXiv: 1411.5997

    Article  ADS  MathSciNet  Google Scholar 

  65. L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, The Z(4430) and a new paradigm for spin interactions in tetraquarks, Phys. Rev. D 89, 114010 (2014), arXiv: 1405.1551

    Article  ADS  Google Scholar 

  66. F.-Z. Peng, M.-Z. Liu, M. S. Sánchez, and M. P. Valderrama, Heavy-hadron molecules from light-meson-exchange saturation, Phys. Rev. D 102, 114020 (2020), arXiv: 2004.05658

    Article  ADS  Google Scholar 

  67. G. Yang, J. Ping, and J. Segovia, Tetra- and pentaquark structures in the constituent quark model, Symmetry 12, 1869 (2020), arXiv: 2009.00238

    Article  ADS  Google Scholar 

  68. J.-M. Richard, Fully-heavy tetraquarks and other heavy multiquarks, Nucl. Part. Phys. Proc. 312–317, 15295 (2021), arXiv: 2105.02503

    Google Scholar 

  69. M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626

    Article  ADS  Google Scholar 

  70. J.-M. Richard, Exotic hadrons: Review and perspectives, Few Body Syst. 57, 1185 (2016), arXiv: 1606.08593

    Article  ADS  Google Scholar 

  71. R.-H. Wu, et al., NLO effects for QQQ baryons in QCD sum rules, Chin. Phys. C 45, 093103 (2021), arXiv: 2104.07384

    Article  ADS  Google Scholar 

  72. S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy, Elastic, inelastic, and path length fluctuations in jet tomography, Nucl. Phys. A 784, 426 (2007), arXiv: nucl-th/0512076

    Article  ADS  Google Scholar 

  73. K. Zhou, N. Xu, Z. Xu, and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89, 054911 (2014), arXiv: 1401.5845

    Article  ADS  Google Scholar 

  74. LHCb Collaboration, Study of prompt D0 meson production in pPb at \(\sqrt {{s_{NN}}} = 8.16\) TeV at LHCb, LHCb-CONF-2019-004, 2019

  75. LHCb Collaboration, R. Aaij, et al., Observation of J/ψ-pair production in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\) Phys. Lett. B 707, 52 (2012), arXiv: 1109.0963

    Article  ADS  Google Scholar 

  76. LHCb collaboration, R. Aaij, et al., Measurement of the cross-section ratio σ(χc2)/σ(χc1) for prompt χc production at \(\sqrt s = 7\) TeV, Phys. Lett. B 714, 215 (2012), arXiv: 1202.1080

    Article  ADS  Google Scholar 

  77. LHCb Collaboration, R. Aaij, et al., Measurement of the ratio of prompt χc to J/ψ production in pp collisions at \(\sqrt s = 7\) TeV, Phys. Lett. B 718, 431 (2012), arXiv: 1204.1462

    Article  ADS  Google Scholar 

  78. LHCb Collaboration, R. Aaij, et al., Observation of ϒ(3872) production in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\) Eur. Phys. J. C 72, 1972 (2012), arXiv: 1112.5310

    Article  ADS  Google Scholar 

  79. LHCb Collaboration, R. Aaij, et al., Measurement of Y production in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\), Eur. Phys. J. C 72, 2025 (2012), arXiv: 1202.6579

    Article  Google Scholar 

  80. LHCb Collaboration, R. Aaij, et al., Measurement of the B± production cross-section in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\), J. High Energy Phys. 04, 093 (2012), arXiv: 1202.4812

    Article  Google Scholar 

  81. LHCb Collaboration, R. Aaij, et al., Measurement of ψ(2S) meson production in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\), Eur. Phys. J. C 72, 2100 (2012), Erratum: Eur. Phys. J. C 80, 49 (2020), arXiv: 1204.1258

    Article  ADS  Google Scholar 

  82. LHCb Collaboration, R. Aaij, et al., Observation of double charm production involving open charm in pp collisions at \(\sqrt s = 7\) TeV, J. High Energy Phys. 06, 141 (2012), Addendum: J. High Energy Phys. 03, 108 (2014), arXiv: 1205.0975

    Article  Google Scholar 

  83. LHCb Collaboration, R. Aaij, et al., Measurements of B +c production and mass with the \(B_c^ + \to J/\psi {\pi ^ + }\) decay, Phys. Rev. Lett. 109, 232001 (2012), arXiv: 1209.5634

    Article  Google Scholar 

  84. LHCb Collaboration, R. Aaij, et al., Measurement of J/ψ production in pp collisions at \(\sqrt s = 2.76\,\,{\rm{TeV}}\), J. High Energy Phys. 02, 041 (2013), arXiv: 1212.1045

    Article  Google Scholar 

  85. LHCb Collaboration, R. Aaij, et al., Measurement of B meson production cross-sections in proton-proton collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\), J. High Energy Phys. 08, 117 (2013), arXiv: 1306.3663

    Article  Google Scholar 

  86. LHCb Collaboration, R. Aaij, et al., Measurement of the relative rate of prompt χc0, ψc1 and ψc2 production at \(\sqrt s = 7\,\,{\rm{TeV}}\), J. High Energy Phys. 10, 115 (2013), arXiv: 1307.4285

    Article  Google Scholar 

  87. LHCb Collaboration, R. Aaij, et al., Study of j/ψ production and cold nuclear matter effects in pPb collisions at \(\sqrt {{s_{NN}}} = 5\,\,{\rm{TeV}}\), J. High Energy Phys. 02, 072 (2014), arXiv: 1308.6729

    Google Scholar 

  88. LHCb Collaboration, R. Aaij, et al., Measurement of Y production in pp collisions at \(\sqrt s = 2.76{\rm{TeV}}\), Eur. Phys. J. C 74, 2835(2014), arXiv: 1402.2539

    Google Scholar 

  89. LHCb Collaboration, R. Aaij, et al., Study of the kinematic dependences of Λ 0b production in pp collisions and a measurement of the Λ 0b →-Λ 0c π branching fraction, J. High Energy Phys. 08, 143 (2014), arXiv: 1405.6842

    Google Scholar 

  90. LHCb Collaboration, R. Aaij, et al., Study of γ production and cold nuclear matter effects in pPb collisions at \(\sqrt {{s_{NN}}} = 5\,\,{\rm{TeV}}\), J. High Energy Phys. 07, 094 (2014), arXiv: 1405.5152

    Google Scholar 

  91. LHCb Collaboration, R. Aaij, et al., Measurement of the ηc(1S) production cross-section in proton-proton collisions via the decay \({\eta _c}\left( {1S} \right) \to p\overline p \), Eur. Phys. J. C 75, 311 (2015), arXiv: 1409.3612

    Article  Google Scholar 

  92. LHCb Collaboration, R. Aaij, et al., Study of χb meson production in pp collisions at \(\sqrt s = 7\) and 8 TeV and observation of the decay χbγ(3S)γ, Eur. Phys. J. C 74 (2014) 3092, arXiv: 1407.7734

    Google Scholar 

  93. LHCb Collaboration, R. Aaij, et al., Measurement of the ψb(3P) mass and of the relative rate of ψb1(1P) and χb2(1P) production, J. High Energy Phys. 10, 088 (2014), arXiv: 1409.1408

    Google Scholar 

  94. LHCb Collaboration, R. Aaij, et al., Measurement of B +c production in proton-proton collisions at \(\sqrt s = 8\,\,{\rm{TeV}}\), Phys. Rev. Lett. 114, 132001 (2015), arXiv: 1411.2943

    Article  ADS  Google Scholar 

  95. LHCb Collaboration, R. Aaij, et al., Identification of beauty and charm quark jets at LHCb, J. Instrument. 10, P06013 (2015), arXiv: 1504.07670

    Article  Google Scholar 

  96. LHCb Collaboration, R. Aaij, et al., Study of the productions of Λ 0b and \({\overline B ^0}\) hadrons in pp collisions and first measurement of the Λ 0b J/ψpK branching fraction, Chin. Phys. C 40, 011001 (2016), arXiv: 1509.00292

    Article  ADS  Google Scholar 

  97. LHCb Collaboration, R. Aaij, et al., Forward production of γ mesons in pp collisions at \(\sqrt s = 7\) and 8 TeV, J. High Energy Phys. 11, 103 (2015), arXiv: 1509.02372

    Google Scholar 

  98. LHCb Collaboration, R. Aaij, et al., Production of associated γ and open charm hadrons in pp collisions at \(\sqrt s = 7\) and 8 TeV via double parton scattering, J. High Energy Phys. 07, 052 (2016), arXiv: 1510.05949

    Google Scholar 

  99. LHCb Collaboration, R. Aaij, et al., Study of ψ(2S) production cross-sections and cold nuclear matter effects in pPb collisions at \(\sqrt {{s_{NN}}} = 5\,\,{\rm{TeV}}\), J. High Energy Phys. 03, 133 (2016), arXiv: 1601.07878

    Google Scholar 

  100. LHCb Collaboration, R. Aaij, et al., Measurements of prompt charm production cross-sections in pp collisions at \(\sqrt s = 5\,\,{\rm{TeV}}\), J. High Energy Phys. 06, 147 (2017), arXiv: 1610.02230

    Google Scholar 

  101. LHCb Collaboration, R. Aaij, et al., Measurement of the J/ψ pair production cross-section in pp collisions at \(\sqrt s =13\,\,{\rm{TeV}}\), J. High Energy Phys. 06 (2017) 047, Erratum: J. High Energy Phys. 10, 068 (2017), arXiv: 1612.07451

    Google Scholar 

  102. LHCb Collaboration, R. Aaij, et al., Study of J/ψ production in jets, Phys. Rev. Lett. 118, 192001 (2017), arXiv: 1701.05116

    Article  ADS  Google Scholar 

  103. LHCb Collaboration, R. Aaij, et al., Prompt and nonprompt J/ψ production and nuclear modification in pPb collisions at \(\sqrt {{s_{NN}}} = 8.16\,\,{\rm{TeV}}\), Phys. Lett. B 774 (2017) 159, arXiv: 1706.07122

    Article  ADS  Google Scholar 

  104. LHCb Collaboration, R. Aaij, et al., Study of prompt D0 meson production in pPb collisions at \(\sqrt {{s_{NN}}} = 5\) TeV, J. High Energy Phys. 10, 090 (2017), arXiv: 1707.02750

    Google Scholar 

  105. LHCb Collaboration, R. Aaij, et al., Measurement of the B± production cross-section in pp collisions at \(\sqrt s = 7\) and 13 TeV, J. High Energy Phys. 12, 026 (2017), arXiv: 1710.04921

    Google Scholar 

  106. LHCb Collaboration, R. Aaij, et al., Measurement of Y production cross-section in pp collisions at \(\sqrt s = 13\) TeV, J. High Energy Phys. 07, 134 (2018), arXiv: 1804.09214

    Article  ADS  Google Scholar 

  107. LHCb Collaboration, R. Aaij, et al., Prompt Λ 0c production in pPb collisions at \(\sqrt {{s_{NN}}} = 5.02\,\,{\rm{TeV}}\), J. High Energy Phys. 02, 102 (2019), arXiv: 1809.01404

    Article  Google Scholar 

  108. LHCb Collaboration, R. Aaij, et al., Study of Y production in pPb collisions at \(\sqrt {{s_{NN}}} = 8.16\,\,{\rm{TeV}}\), J. High Energy Phys. 11, 194 (2018), arXiv: 1810.07655

    Article  Google Scholar 

  109. LHCb Collaboration, R. Aaij, et al., Measurement of the mass and production rate of Ξ b C baryons, Phys. Rev. D 99, 052006 (2019), arXiv: 1901.07075

    Article  ADS  Google Scholar 

  110. LHCb Collaboration, R. Aaij, et al., Measurement of B+, B0 and Λ 0b production in pPb collisions at \(\sqrt {{s_{NN}}} = 8.16\,\,{\rm{TeV}}\), Phys. Rev. D 99, 052011 (2019), arXiv: 1902.05599

    Article  ADS  Google Scholar 

  111. LHCb Collaboration, R. Aaij, et al., Measurement of ψ(2S) production cross-sections in proton-proton collisions at \(\sqrt s = 7\) and 13 TeV, Eur. Phys. J. C 80, 185 (2020), arXiv: 1908.03099

    Article  Google Scholar 

  112. LHCb Collaboration, R. Aaij, et al., Measurement of the θc(1S) production cross-section in pp collisions at \(\sqrt s =13\,\,{\rm{TeV}}\), Eur. Phys. J. C 80, 191 (2020), arXiv: 1911.03326

    Article  Google Scholar 

  113. LHCb Collaboration, R. Aaij, et al., Measurement of the B c production fraction and asymmetry in 7 and 13 TeV pp collisions, Phys. Rev. D 100, 112006 (2019), arXiv: 1910.13404

    Article  ADS  Google Scholar 

  114. LHCb Collaboration, R. Aaij, et al., Measurement of Ξ ++cc production in pp collisions at \(\sqrt s =13\,\,{\rm{TeV}}\), Chin. Phys. C 44, 022001 (2020), arXiv: 1910.11316

    Article  ADS  Google Scholar 

  115. LHCb Collaboration, R. Aaij, et al., Observation of enhanced double parton scattering in proton-lead collisions at \(\sqrt {{s_{NN}}} = 8.16\,\,{\rm{TeV}}\), Phys. Rev. Lett. 125, 212001 (2020), arXiv: 2007.06945

    Article  ADS  Google Scholar 

  116. LHCb Collaboration, R. Aaij, et al., Observation of multiplicity-dependent χc1(3872) and ψ(2S) production in pp collisions, Phys. Rev. Lett. 126, 092001 (2021), arXiv: 2009.06619

    Article  ADS  Google Scholar 

  117. LHCb Collaboration, R. Aaij, et al., Precise measurement of the fs/fd ratio of fragmentation fractions and of B 0s decay branching fractions, Phys. Rev. D 104, 032005 (2021), arXiv: 2103.06810

    Article  ADS  Google Scholar 

  118. LHCb Collaboration, R. Aaij, et al., Measurement of prompt-cross-section ratio σ(χc2)/ςχc1) in pPb collisions at \(\sqrt {{s_{NN}}} = 8.16\,\,{\rm{TeV}}\), Phys. Rev. C 103 (2021) 064905, arXiv: 2103.07349

    Article  ADS  Google Scholar 

  119. LHCb Collaboration, R. Aaij, et al., Measurement of χc1(3872) production in proton-proton collisions at \(\sqrt s = 8\) and 13 TeV, J. High Energy Phys. 01, 131 (2022), arXiv: 2109.07360

    Article  ADS  Google Scholar 

  120. J. Pumplin, et al., New generation of parton distributions with uncertainties from global QCD analysis, J. High Energy Phys. 07, 012 (2002), arXiv: hep-ph/0201195

    Article  ADS  Google Scholar 

  121. M. Cacciari, M. Greco, and P. Nason, The pT spectrum in heavy-flavor hadroproduction, J. High Energy Phys. 05, 007 (1998), arXiv: hep-ph/9803400

    Article  ADS  Google Scholar 

  122. R. Gauld and J. Rojo, Precision determination of the small-x gluon from charm production at LHCb, Phys. Rev. Lett. 118, 072001 (2017), arXiv: 1610.09373

    Article  ADS  Google Scholar 

  123. LHCb Collaboration, R. Aaij, et al., Measurement of J/ψ polarization in pp collisions at \(\sqrt s = 7\,\,{\rm{TeV}}\), Eur. Phys. J. C 73, 2631 (2013), arXiv: 1307.6379

    Article  Google Scholar 

  124. K.-T. Chao, et al., J/ψ polarization at hadron colliders in nonrelativistic QCD, Phys. Rev. Lett. 108, 242004 (2012), arXiv: 1201.2675

    Article  ADS  Google Scholar 

  125. M. Butenschoen and B. A. Kniehl, J/ψ production in NRQCD: A global analysis of yield and polarization, Nucl. Phys. B Proc. Suppl. 222–224, 151 (2012), arXiv: 1201.3862

    Article  ADS  Google Scholar 

  126. B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, Polarization for prompt J/ψ and ψ(2S) production at the Tevatron and LHC, Phys. Rev. Lett. 110, 042002 (2013), arXiv: 1205.6682

    Article  ADS  Google Scholar 

  127. Y.-Q. Ma and R. Venugopalan, Comprehensive description of J/ψ production in proton-proton collisions at collider energies, Phys. Rev. Lett. 113, 192301 (2014), arXiv: 1408.4075

    Article  ADS  Google Scholar 

  128. Y. Zhang, Measurement of charmonium polarization with the LHCb detector, PhD thesis, Tsinghua University, Beijing, 2013

    Google Scholar 

  129. N. Brambilla, et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011), arXiv: 1010.5827

    Article  ADS  Google Scholar 

  130. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77, 1423 (2005), arXiv: hep-ph/0410047

    Article  ADS  Google Scholar 

  131. G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995), Erratum: Phys. Rev. D 55, 5853 (1997), arXiv: hep-ph /9407339

    Article  ADS  Google Scholar 

  132. Y.-Q. Ma and R. Vogt, Quarkonium production in an improved color evaporation model, Phys. Rev. D 94, 114029 (2016), arXiv: 1609.06042

    Article  ADS  Google Scholar 

  133. LHCb Collaboration, R. Aaij, et al., Measurement of the γ(nS) polarizations in pp collisions at \(\sqrt s = 7\) and 8 TeV, J. High Energy Phys. 12, 110 (2017), arXiv: 1709.01301

    Google Scholar 

  134. LHCb Collaboration, R. Aaij, et al., Measurement of ψ(2S) polarisation in pp collisions at ψ, Eur. Phys. J. C 74, 2872 (2014), arXiv: 1403.1339

    Google Scholar 

  135. H. S. Shao, et al., Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions, J. High Energy Phys. 05, 103 (2015), arXiv: 1411.3300

    Article  ADS  Google Scholar 

  136. H.-S. Shao, Probing heavy quarkonium production mechanism: Xc polarization, AIP Conf. Proc. 1701, 050006 (2016), arXiv: 1412.2576

    Article  Google Scholar 

  137. M. Butenschoen and B. A. Kniehl, J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads, Phys. Rev. Lett. 108, 172002 (2012), arXiv: 1201.1872

    Article  ADS  Google Scholar 

  138. Y.-Q. Ma, T. Stebel, and R. Venugopalan, J/ψ polarization in the CGC+NRQCD approach, J. High Energy Phys. 12, 057 (2018), arXiv: 1809.03573

    Article  ADS  Google Scholar 

  139. H.-S. Shao, Y.-Q. Ma, K. Wang, and K.-T. Chao, Polarizations of χc1 and χc2 in prompt production at the LHC, Phys. Rev. Lett. 112, 182003 (2014), arXiv: 1402.2913

    Article  ADS  Google Scholar 

  140. H.-S. Shao and K.-T. Chao, Spin correlations in polarizations of P-wave charmonia χcJ and impact on J/ψ polarization, Phys. Rev. D 90, 014002 (2014), arXiv: 1209.4610

    Article  ADS  Google Scholar 

  141. E. Chapon, et al., Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122, 103906 (2022), arXiv: 2012.14161

    Article  Google Scholar 

  142. C. H. Kom, A. Kulesza, and W. J. Stirling, Pair production of J/ψ as a probe of double parton scattering at LHCb, Phys. Rev. Lett. 107, 082002 (2011), arXiv: 1105.4186

    Article  ADS  Google Scholar 

  143. H.-S. Shao and Y.-J. Zhang, Triple prompt J/ψ hadroproduction as a hard probe of multiple-parton scatterings, Phys. Rev. Lett. 122, 192002 (2019), arXiv: 1902.04949

    Article  ADS  Google Scholar 

  144. Z.-G. He, Y. Fan, and K.-T. Chao, Relativistic corrections to J/ψ exclusive and inclusive double charm production at B factories, Phys. Rev. D 75, 074011 (2007), arXiv: hep-ph/0702239

    Article  ADS  Google Scholar 

  145. J.-P. Lansberg and H.-S. Shao, Production of J/ψ + ηcversus J/ψ + J/ψ at the LHC: Importance of real α 5s corrections, Phys. Rev. Lett. 111, 122001 (2013), arXiv: 1308.0474

    Article  ADS  Google Scholar 

  146. H.-S. Shao, J/ψ meson production in association with an open charm hadron at the LHC: A reappraisal, Phys. Rev. D 102, 034023 (2020), arXiv: 2005.12967

    Article  ADS  Google Scholar 

  147. CDF Collaboration, F. Abe, et al., Double parton scattering in \(\bar pp\) collisions at \(\sqrt s = 1.8\,\,{\rm{TeV}}\), Phys. Rev. D 56, 3811 (1997)

    Article  ADS  Google Scholar 

  148. ATLAS Collaboration, M. Aaboud, et al., Measurement of the prompt J/ψ pair production cross-section in pp collisions at \(\sqrt s = 8\,\,{\rm{TeV}}\) with the ATLAS detector, Eur. Phys. J. C 77, 76 (2017), arXiv: 1612.02950

    Article  ADS  Google Scholar 

  149. D0 Collaboration, V. M. Abazov, et al., Evidence for simultaneous production of J/ψ and Y mesons, Phys. Rev. Lett. 116, 082002 (2016), arXiv: 1511.02428

    Article  ADS  Google Scholar 

  150. J.-P. Lansberg and H.-S. Shao, J/ψ-pair production at large momenta: Indications for double parton scatterings and large α 5s contributions, Phys. Lett. B 751, 479 (2015), arXiv: 1410.8822

    Article  ADS  Google Scholar 

  151. S. P. Baranov, A. M. Snigirev, and N. P. Zotov, Double heavy meson production through double parton scattering in hadronic collisions, Phys. Lett. B 705, 116 (2011), arXiv: 1105.6276

    Article  ADS  Google Scholar 

  152. D. d’Enterria and A. M. Snigirev, Same-sign WW production in proton-nucleus collisions at the LHC as a signal for double parton scattering, Phys. Lett. B 718, 1395 (2013), arXiv: 1211.0197

    Article  ADS  Google Scholar 

  153. E. G. Ferreiro and J.-P. Lansberg, Is bottomonium suppression in proton-nucleus and nucleus-nucleus collisions at LHC energies due to the same effects? J. High Energy Phys. 10, 094 (2018), Erratum: J. High Energy Phys. 03, 063 (2019), arXiv: 1804.04474

    Article  ADS  Google Scholar 

  154. S. Gavin and J. Milana, Energy loss at large xF in nuclear collisions, Phys. Rev. Lett. 68, 1834 (1992)

    Article  ADS  Google Scholar 

  155. N. Armesto, Nuclear shadowing, J. Phys. G 32, R367 (2006), arXiv: hep-ph/0604108

    Article  Google Scholar 

  156. F. Arleo and S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, J. High Energy Phys. 03, 122 (2013), arXiv: 1212.0434

    Article  ADS  Google Scholar 

  157. A. Kusina, J.-P. Lansberg, I. Schienbein, and H.-S. Shao, Gluon shadowing in heavy-flavor production at the LHC, Phys. Rev. Lett. 121, 052004 (2018), arXiv: 1712.07024

    Article  ADS  Google Scholar 

  158. F. Arleo, G. Jackson, and S. Peigné, Impact of fully coherent energy loss on heavy meson production in pA collisions, arXiv: 2107.05871 (2021)

  159. E. Braaten, L.-P. He, K. Ingles, and J. Jiang, Production of X(3872) at high multiplicity, Phys. Rev. D 103, L071901 (2021), arXiv: 2012.13499

    Article  ADS  Google Scholar 

  160. A. Esposito, et al., The nature of X(3872) from high-multiplicity pp collisions, Eur. Phys. J. C 81, 669 (2021), arXiv: 2006.15044

    Article  ADS  Google Scholar 

  161. M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  162. G. Zweig, An SU3 Model for Strong Interaction Symmetry and Its Breaking, Version 2, 1964

  163. S.-L. Zhu, Understanding pentaquark states in QCD, Phys. Rev. Lett. 91, 232002 (2003), arXiv: hep-ph/ 0307345

    Article  ADS  Google Scholar 

  164. Z.-F. Sun, et al., Zb(10610)± and Zb(10650)±= as the \({B^ * }\overline B \) and \({B^ * }{\overline B ^ * }\) molecular states, Phys. Rev. D 84, 054002 (2011), arXiv: 1106.2968

    Article  ADS  Google Scholar 

  165. X. Liu and S.-L. Zhu, Y(4143) is probably a molecular partner of Y(3930), Phys. Rev. D 80, 017502 (2009), Erratum: Phys. Rev. D 85, 019902 (2012), arXiv: 0903.2529

    Article  ADS  Google Scholar 

  166. Y.-R. Liu, X. Liu, W.-Z. Deng, and S.-L. Zhu, Is X(3872) really a molecular state? Eur. Phys. J. C 56, 63 (2008), arXiv: 0801.3540

    Article  ADS  Google Scholar 

  167. S.-L. Zhu, New hadron states, Int. J. Mod. Phys. E 17, 283 (2008), arXiv: hep-ph/0703225

    Article  ADS  Google Scholar 

  168. R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Strong LHCb evidence supporting the existence of the hiddencharm molecular pentaquarks, Phys. Rev. D 100, 011502 (2019), arXiv: 1903.11013

    Article  ADS  Google Scholar 

  169. X. Liu, Y.-R. Liu, W.-Z. Deng, and S.-L. Zhu, Is Z+(4430) a loosely bound molecular state? Phys. Rev. D 77, 034003 (2008), arXiv: 0711.0494

    Article  ADS  Google Scholar 

  170. Webpage: www.nikhef.nl/%7Epkoppenb/particles.html

  171. LHCb Collaboration, R. Aaij, et al., Precise measurements of the properties of the B1(5721)0,+ and B2*(5747)0,+ states and observation of structure at higher invariant mass in the B+π and B0ψ+ spectra, J. High Energy Phys. 04, 024 (2015), arXiv: 1502.02638

    Google Scholar 

  172. LHCb Collaboration, R. Aaij, et al., Observation of new excited B 0s states, Eur. Phys. J. C 81, 601 (2021), arXiv: 2010.15931

    Article  ADS  Google Scholar 

  173. LHCb Collaboration, R. Aaij, et al., Study of DJ meson decays to D+π, D0π+ and D*+π− final states in pp collisions, J. High Energy Phys. 09, 145 (2013), arXiv: 1307.4556

    Article  Google Scholar 

  174. LHCb Collaboration, R. Aaij, et al., Observation of overlapping spin-1 and spin-3 \({\bar D^0}K\) resonances at mass 2.86 GeV/c2, Phys. Rev. Lett. 113, 162001 (2014), arXiv: 1407.7574

    Article  ADS  Google Scholar 

  175. LHCb Collaboration, R. Aaij, et al., Amplitude analysis of B→Dπ+ψ decays, Phys. Rev. D 94, 072001 (2016), arXiv: 1608.01289

    Article  ADS  Google Scholar 

  176. LHCb Collaboration, R. Aaij, et al., Observation of a new excited D +s state in B0 D−D+K+π decays, Phys. Rev. Lett. 126, 122002 (2021), arXiv: 2011.09112

    Article  ADS  Google Scholar 

  177. S.-Q. Luo, B. Chen, X. Liu, and T. Matsuki, Predicting a new resonance as charmed-strange baryonic analog of Ds0* (2317), Phys. Rev. D 103, 074027 (2021), arXiv: 2102.00679

    Article  ADS  Google Scholar 

  178. R.-H. Ni, Q. Li, and X.-H. Zhong, Mass spectra and strong decays of charmed and charmed-strange mesons, arXiv: 2110.05024 (2021)

  179. J.-M. Xie, M.-Z. Liu, and L.-S. Geng, Ds0(2590) as a dominant cs state with a small D K component, arXiv: 2108.12993 (2021)

  180. Z. Yang, et al., Novel coupled channel framework connecting quark model and lattice QCD: An investigation on near-threshold Ds states, arXiv: 2107.04860 (2021)

  181. G.-L. Wang, et al., The newly observed state Ds0(2590)+ and width of D*(2007)0, arXiv: 2107.01751 (2021)

  182. Z.-H. Wang, G.-L. Wang, J.-M. Zhang, and T.-H. Wang, The productions and strong decays of Dq(2S) and Bq(2S), J. Phys. G 39, 085006 (2012), arXiv: 1207.2528

    Article  ADS  Google Scholar 

  183. X. Liu, et al., Bottom baryons, Phys. Rev. D 77, 014031 (2008), arXiv: 0710.0123

    Article  ADS  Google Scholar 

  184. G.-L. Yu, Z.-G. Wang, and X.-W. Wang, The 1D, 2D Ξb and Λb baryons, arXiv: 2109.02217 (2021)

  185. K.-L. Wang and X.-H. Zhong, Toward establishing the low-lying P-wave excited Σc baryon states, arXiv: 2110.12443 (2021)

  186. T. Matsuki, et al., Regge-like relation and universal description of heavy-light systems, PoS Hadron 2017, 071 (2018)

    Google Scholar 

  187. K.-L. Wang, Y.-X. Yao, X.-H. Zhong, and Q. Zhao, Strong and radiative decays of the low-lying S− and P-wave singly heavy baryons, Phys. Rev. D 96, 116016 (2017), arXiv: 1709.04268

    Article  ADS  Google Scholar 

  188. Q. Mao, et al., D-wave heavy baryons of the SU(3) flavor 6F, Phys. Rev. D 96, 074021 (2017), arXiv: 1707.03712

    Article  ADS  Google Scholar 

  189. H.-Y. Cheng and C.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396

    Article  ADS  Google Scholar 

  190. H.-M. Yang and H.-X. Chen, P-wave bottom baryons of the SU(3) flavor 6F, Phys. Rev. D 101, 114013 (2020), Erratum: Phys. Rev. D 102, 079901 (2020), arXiv: 2003.07488

    Article  ADS  Google Scholar 

  191. B. Chen, K.-W. Wei, X. Liu, and A. Zhang, Role of newly discovered Ξb,(6227) for constructing excited bottom baryon family, Phys. Rev. D 98, 031502 (2018), arXiv: 1805.10826

    Article  ADS  Google Scholar 

  192. Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and K.-W. Wei, Spectra of charmed and bottom baryons with hyperfine interaction, Chin. Phys. C 41, 093103 (2017), arXiv: 1701.04524

    Article  ADS  Google Scholar 

  193. K.-W. Wei, et al., Spectroscopy of singly, doubly, and triply bottom baryons, Phys. Rev. D 95, 116005 (2017), arXiv: 1609.02512

    Article  ADS  Google Scholar 

  194. J.-X. Lu, et al., Λc(2595) resonance as a dynamically generated state: The compositeness condition and the large Nc evolution, Phys. Rev. D 93, 114028 (2016), arXiv: 1603.05388

    Article  ADS  Google Scholar 

  195. H.-Z. He, W. Liang, Q.-F. Lü, and Y.-B. Dong, Strong decays of the low-lying bottom strange baryons, Sci. China Phys. Mech. Astron. 64, 261012 (2021), arXiv: 2102.07391

    Article  ADS  Google Scholar 

  196. J.-R. Zhang and M.-Q. Huang, Heavy baryon spectroscopy in QCD, Phys. Rev. D 78, 094015 (2008), arXiv: 0811.3266

    Article  ADS  Google Scholar 

  197. J.-R. Zhang and M.-Q. Huang, Mass spectra of the heavy baryons ΞQ and ΩQ(*) From QCD sum rules, Phys. Rev. D 77, 094002 (2008), arXiv: 0805.0479

    Article  ADS  Google Scholar 

  198. K.-W. Wei and X.-H. Guo, Mass spectra of doubly heavy mesons in Regge phenomenology, Phys. Rev. D 81, 076005 (2010)

    Article  ADS  Google Scholar 

  199. F.-K. Guo, C. Hanhart, and U.-G. Meissner, Mass splittings within heavy baryon isospin multiplets in chiral perturbation theory, J. High Energy Phys. 09, 136 (2008), arXiv: 0809.2359

    Article  ADS  Google Scholar 

  200. LHCb Collaboration, R. Aaij, et al., Observation of five new narrow Ω0c states decaying to Ξc+K, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639

    Article  ADS  Google Scholar 

  201. Belle Collaboration, J. Yelton, et al., Observation of excited Ωc charmed baryons in e+e collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927

    Article  ADS  Google Scholar 

  202. LHCb Collaboration, R. Aaij, et al., Observation of excited Ω 0c baryons in \(\Omega _b^ - \to {\Xi _c}^ + {K^ - }{\pi ^ + }\) decays, Phys. Rev. D 104, L091102 (2021), arXiv: 2107.03419

    Article  ADS  Google Scholar 

  203. M. Karliner and J. L. Rosner, Very narrow excited c baryons, Phys. Rev. D 95, 114012 (2017), arXiv: 1703.07774

    Article  ADS  Google Scholar 

  204. K.-L. Wang, L.-Y. Xiao, X.-H. Zhong, and Q. Zhao, Understanding the newly observed Ωc states through their decays, Phys. Rev. D 95, 116010 (2017), arXiv: 1703.09130

    Article  ADS  Google Scholar 

  205. H.-G. Xu, et al., Investigation of states decaying to \(\Xi _c^ + {K^ - }\), Phys. Rev. C 102, 054319 (2020), arXiv: 1912.12905

    Article  ADS  Google Scholar 

  206. B. Chen and X. Liu, New Ω 0c baryons discovered by LHCb as the members of 1P and 2S states, Phys. Rev. D 96, 094015 (2017), arXiv: 1704.02583

  207. W. Wang and R.-L. Zhu, Interpretation of the newly observed Ω 0c resonances, Phys. Rev. D 96, 014024 (2017), arXiv: 1704.00179

    Article  ADS  Google Scholar 

  208. H.-X. Chen, et al., Decay properties of P-wave charmed baryons from light-cone QCD sum rules, Phys. Rev. D 95, 094008 (2017), arXiv: 1703.07703

    Article  ADS  Google Scholar 

  209. G. Yang and J. Ping, Dynamical study of Ω 0c in the chiral quark model, Phys. Rev. D 97, 034023 (2018), arXiv: 1703.08845

    Article  ADS  Google Scholar 

  210. H.-J. Wang, Z.-Y. Di, and Z.-G. Wang, Analysis of the excited Ωc states as the (l/2)± pentaquark states with QCD sum rules, Commun. Theor. Phys. 73, 035201 (2021)

    Article  ADS  Google Scholar 

  211. Z.-G. Wang and J.-X. Zhang, Possible pentaquark candidates: New excited Ωc states, Eur. Phys. J. C 78, 503 (2018), arXiv: 1804.06195

    Article  ADS  Google Scholar 

  212. R. Chen, A. Hosaka, and X. Liu, Searching for possible Ωc-like molecular states from meson-baryon interaction, Phys. Rev. D 97, 036016 (2018), arXiv: 1711.07650

    Article  ADS  Google Scholar 

  213. C. Wang et al., Possible open-charmed pentaquark molecule Ωc(3188) — the bound state — in the Bethe-Salpeter formalism, Eur. Phys. J. C 78, 407 (2018), arXiv: 1710.10850

    Article  ADS  Google Scholar 

  214. Z.-G. Wang, X.-N. Wei, and Z.-H. Yan, Revisit assignments of the new excited Ωc states with QCD sum rules, Eur. Phys. J. C 77, 832 (2017), arXiv: 1706.09401

    Article  ADS  Google Scholar 

  215. LHCb Collaboration, R. Aaij, et al., Observation of new Ξ 0c baryons decaying to Ξ +c K, Phys. Rev. Lett. 124, 222001 (2020), arXiv: 2003.13649

    Article  ADS  Google Scholar 

  216. Belle collaboration, Y. B. Li, et al., Observation of Ξc(2930)0 and updated measurement of \({B^ - } \to {K^ - }\Lambda _c^ + \,\,{\overline \Lambda _{\overline c }}\) at Belle, Eur. Phys. J. C 78, 252 (2018), arXiv: 1712.03612

    Google Scholar 

  217. LHCb Collaboration, R. Aaij, et al., Study of the B+\({B^ + } \to \Lambda _c^ + \,\,{\overline \Lambda _{\overline c }}{K^ + }\) decay, arXiv: 2211.00812 (submitted to Phys. Rev. D)

  218. D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. S 659, 612 (2008), arXiv: 0705.2957

    Article  ADS  Google Scholar 

  219. W. Roberts and M. Pervin, Heavy baryons in a quark model, Int. J. Mod. Phys. A 23, 2817 (2008), arXiv: 0711.2492

    Article  ADS  Google Scholar 

  220. S. Migura, D. Merten, B. Metsch, and H.-R. Petry, Charmed baryons in a relativistic quark model, Eur. Phys. J. A 28, 41 (2006), arXiv: hep-ph/0602153

    Article  ADS  Google Scholar 

  221. H.-M. Yang and H.-X. Chen, P-wave charmed baryons of the SU(3) flavor 6F, Phys. Rev. D 104, 034037 (2021), arXiv: 2106.15488

    Article  ADS  Google Scholar 

  222. B. Chen, S.-Q. Luo, and X. Liu, Universal behavior of mass gaps existing in the single heavy baryon family, Eur. Phys. J. C 81, 474 (2021), arXiv: 2101.10806

    Article  ADS  Google Scholar 

  223. J. Nieves, R. Pavao, and L. Tolos, Ξc and Ξb excited states within a SU(6)lsf×XHQSS model, Eur. Phys. J. C 80, 22 (2020), arXiv: 1911.06089

    Article  ADS  Google Scholar 

  224. Y.-J. Xu, Y.-L. Liu, C.-Y. Cui, and M.-Q. Huang, P-]wave fit states: Masses and pole residues, arXiv: 2010.10697 (2020)

  225. M. Karliner and J. L. Rosner, Interpretation of excited fit signals, Phys. Rev. D 102, 014027 (2020), arXiv: 2005.12424

    Article  ADS  Google Scholar 

  226. L.-Y. Xiao and X.-H. Zhong, Toward establishing the low-lying P-wave Σb states, Phys. Rev. D 102, 014009 (2020), arXiv: 2004.11106

    Article  ADS  Google Scholar 

  227. H.-M. Yang, H.-X. Chen, and Q. Mao, Excited Ξ 0c baryons within the QCD rum rule approach, Phys. Rev. D 102, 114009 (2020), arXiv: 2004.00531

    Article  ADS  Google Scholar 

  228. L.-Y. Xiao, K.-L. Wang, M.-S. Liu, and X.-H. Zhong, Possible interpretation of the newly observed fit states, Eur. Phys. J. C 80, 279 (2020), arXiv: 2001.05110

    Article  ADS  Google Scholar 

  229. Z.-G. Wang, Analysis of the Ω(6316), Ωb(6330), Ωb(6340) and Ωb(6350) with QCD sum rules, Int. J. Mod. Phys. A 35, 2050043 (2020), arXiv: 2001.02961

    Article  ADS  Google Scholar 

  230. W.-H. Liang and E. Oset, Observed fit spectrum and meson-baryon molecular states, Phys. Rev. D 101, 054033 (2020), arXiv: 2001.02929

    Article  ADS  Google Scholar 

  231. H.-X. Chen, et al., Excited fit baryons and fine structure of strong interaction, Eur. Phys. J. C 80, 256 (2020), arXiv: 2001.02147

    Article  ADS  Google Scholar 

  232. W. Liang and Q.-F. Lü, Strong decays of the newly observed narrow fit structures, Eur. Phys. J. C 80, 198 (2020), arXiv: 2001.02221

    Article  ADS  Google Scholar 

  233. Q.-F. Lü and X.-H. Zhong, Strong decays of the higher excited ΛQ and ΣQ baryons, Phys. Rev. D 101, 014017 (2020), arXiv: 1910.06126

    Article  ADS  Google Scholar 

  234. B. Chen and X. Liu, Assigning the newly reported Σb(6097) as a P-wave excited state and predicting its partners, Phys. Rev. D 98, 074032 (2018), arXiv: 1810.00389

    Article  ADS  Google Scholar 

  235. H.-J. Wang, Z.-Y. Di, and Z.-G. Wang, Analysis of the Ξb(6227) as the (l/2)± pentaquark molecular states with QCD sum rules, Int. J. Theor. Phys. 59, 3124 (2020)

    Article  Google Scholar 

  236. Q. Mao, et al., QCD sum rule calculation for P-wave bottom baryons, Phys. Rev. D 92, 114007 (2015), arXiv: 1510.05267

    Article  ADS  Google Scholar 

  237. J.-X. Lu, et al., Dynamically generated JP = 1/2 (3/2) singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015), arXiv: 1409.3133

    Article  ADS  Google Scholar 

  238. P. Yang, J.-J. Guo, and A. Zhang, Identification of the newly observed Σ(6097)± baryons from their strong decays, Phys. Rev. D 99, 034018 (2019), arXiv: 1810.06947

    Article  ADS  Google Scholar 

  239. Y. Huang, C.-j. Xiao, L.-S. Geng, and J. He, Strong decays of the Ξb(6227) as a \(\sum\nolimits_b {\overline K } \) molecule, Phys. Rev. D 99, 014008 (2019), arXiv: 1811.10769

    Article  ADS  Google Scholar 

  240. LHCb Collaboration, R. Aaij, et al., Observation of excited Λ 0b baryons, Phys. Rev. Lett. 109, 172003 (2012), arXiv: 1205.3452

    Article  Google Scholar 

  241. LHCb Collaboration, R. Aaij, et al., Observation of new resonances in the Λ; 0b π+π system, Phys. Rev. Lett. 123, 152001 (2019), arXiv: 1907.13598

    Article  ADS  Google Scholar 

  242. LHCb Collaboration, R. Aaij, et al., Observation of a new baryon state in the Λ 0b π+π mass spectrum, JHEP 06 (2020) 136, arXiv: 2002.05112

    Article  ADS  Google Scholar 

  243. B. Chen, S.-Q. Luo, X. Liu, and T. Matsuki, Interpretation of the observed Λb(6146)0 and Λb(6152)0 states as 1D bottom baryons, Phys. Rev. D 100, 094032 (2019), arXiv: 1910.03318

    Article  ADS  Google Scholar 

  244. H.-M. Yang, et al., Decay properties of P-wave bottom baryons within light-cone sum rules, Eur. Phys. J. C 80, 80 (2020), arXiv: 1909.13575

    Article  ADS  Google Scholar 

  245. K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Λb(6146)0 and Λb(6152)0 states in a chiral quark model, Phys. Rev. D 100, 114035 (2019), arXiv: 1908.04622

    Article  ADS  Google Scholar 

  246. K.-L. Wang, Q.-F. Lü, and X.-H. Zhong, Interpretation of the newly observed Σb(6097)± and Ξb(6227) states as the P-wave bottom baryons, Phys. Rev. D 99, 014011 (2019), arXiv: 1810.02205

    Article  ADS  Google Scholar 

  247. Q. Mao, H.-X. Chen, and H.-M. Yang, Identifying the Λb(6146)0 and Λb(6152)0 as D-wave bottom baryons, Universe 6, 86 (2020), arXiv: 2002.11435

    Article  ADS  Google Scholar 

  248. CDF Collaboration, T. Aaltonen, et al., Observation of the heavy baryons Σb and Σb*, Phys. Rev. Lett. 99, 202001 (2007), arXiv: 0706.3868

    Article  ADS  Google Scholar 

  249. LHCb Collaboration, R. Aaij, et al., Observation of two resonances in the Λ 0b π±systems and precise measurement of Λb± and Λb*± properties, Phys. Rev. Lett. 122, 012001 (2019), arXiv: 1809.07752

    Article  ADS  Google Scholar 

  250. CMS Collaboration, S. Chatrchyan, et al., Observation of a new Ξb baryon, Phys. Rev. Lett. 108, 252002 (2012), arXiv: 1204.5955

    Article  ADS  Google Scholar 

  251. LHCb Collaboration, R. Aaij, et al., Observation of two new Ξb baryon resonances, Phys. Rev. Lett. 114, 062004 (2015), arXiv: 1411.4849

    Article  ADS  Google Scholar 

  252. LHCb Collaboration, R. Aaij, et al., Observation of a new Ξb resonance, Phys. Rev. Lett. 121, 072002 (2018), arXiv: 1805.09418

    Article  ADS  Google Scholar 

  253. LHCb Collaboration, R. Aaij, et al., Observation of a new Ξb0 state, Phys. Rev. D 103, 012004 (2021), arXiv: 2010.14485

    Article  ADS  Google Scholar 

  254. LHCb Collaboration, R. Aaij, et al., Observation of two new excited Λb0 states decaying to Λb0Kπ+, Phys. Rev. Lett. 128, 162001 (2022), arXiv: 2110.04497

    Article  ADS  Google Scholar 

  255. CMS Collaboration, A. M. Sirunyan, et al., Observation of a new excited beauty strange baryon decaying to Ξbπ+π, Phys. Rev. Lett. 126, 252003 (2021), arXiv: 2102.04524

    Article  ADS  Google Scholar 

  256. LHCb Collaboration, R. Aaij, et al., First observation of excited Ω b states, Phys. Rev. Lett. 124, 082002 (2020), arXiv: 2001.00851

    Article  ADS  Google Scholar 

  257. LHCb Collaboration, R. Aaij, et al., Observation of an excited B+ state, Phys. Rev. Lett. 122, 232001 (2019), arXiv: 1904.00081

    Article  ADS  Google Scholar 

  258. LHCb Collaboration, R. Aaij, et al., Observation of the doubly charmed baryon Ξ ++cc , Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621

    Article  ADS  Google Scholar 

  259. LHCb Collaboration, R. Aaij, et al., Near-threshold DD spectroscopy and observation of a new charmonium state, J. High Energy Phys. 07, 035 (2019), arXiv: 1903.12240

    Article  ADS  Google Scholar 

  260. T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005), arXiv: hepph/0505002

    Article  ADS  Google Scholar 

  261. CMS Collaboration, A. M. Sirunyan, et al., Observation of two excited B +c states and measurement of the B +c +(2S) mass in pp collisions at \(\sqrt s = 13\,\,{\rm{TeV}}\), Phys. Rev. Lett. 122, 132001 (2019), arXiv: 1902.00571

    Article  ADS  Google Scholar 

  262. S. N. Gupta and J. M. Johnson, Bc spectroscopy in a quantum chromodynamic potential model, Phys. Rev. D 53, 312 (1996), arXiv: hep-ph/9511267

    Article  ADS  Google Scholar 

  263. Y.-Q. Chen and Y.-P. Kuang, Improved QCD motivated heavy quark potentials with explicit \({\Lambda _{\overline {{\rm{MS}}} }}\) dependence, Phys. Rev. D 46, 1165 (1992), Erratum: Phys. Rev. D 47, 350 (1993)

    Article  ADS  Google Scholar 

  264. R. Ding, et al., Finding Bc(3S) states via their strong decays, Phys. Lett. B 816, 136277 (2021), arXiv: 2101.01958

    Article  Google Scholar 

  265. M. Chen, L. Chang, and Y.-X. Liu, Bc meson spectrum via Dyson-Schwinger equation and Bethe-Salpeter equation approach, Phys. Rev. D 101, 056002 (2020), arXiv: 2001.00161

    Article  ADS  Google Scholar 

  266. L. Chang, et al., Can the hyperfine mass splitting formula in heavy quarkonia be applied to the Bcsystem? Few Body Syst. 62, 4 (2021), arXiv: 1912.08339

    Article  ADS  Google Scholar 

  267. L. Chang, M. Chen, and Y.-X. Liu, Excited Bc states via the Dyson-Schwinger equation approach of QCD, Phys. Rev. D 102, 074010 (2020), arXiv: 1904.00399

    Article  ADS  Google Scholar 

  268. C.-H. Chang, C. Driouichi, P. Eerola, and X. G. Wu, BCVEGPY: An event generator for hadronic production of the Bc meson, Comput. Phys. Commun. 159, 192 (2004), arXiv: hep-ph/0309120

    Article  ADS  Google Scholar 

  269. C.-H. Chang, J.-X. Wang, and X.-G. Wu, BCVEGPY2.0: An upgraded version of the generator BCVEGPY with an addition of hadroproduction of the P-wave Bc states, Comput. Phys. Commun. 174, 241 (2006), arXiv: hep-ph/0504017

    Article  ADS  Google Scholar 

  270. F.-S. Yu, Role of decay in the search for double-charm baryons, Sci. China Phys. Mech. Astron. 63, 221065 (2020), arXiv: 1912.10253

    Article  ADS  Google Scholar 

  271. X.-H. Hu and Y.-J. Shi, Light-cone sum rules analysis of \({\Xi _{Q{Q^\prime }}} \to {\Sigma _{{Q^\prime }}}\) weak decays, Eur. Phys. J. C 80, 56 (2020), arXiv: 1910.07909

    Article  ADS  Google Scholar 

  272. LHCb Collaboration, R. Aaij, et al., First observation of the doubly charmed baryon decay Phys. Rev. Lett. 121, 162002 (2018), arXiv: 1807.01919

    Article  ADS  Google Scholar 

  273. LHCb Collaboration, R. Aaij, et al., Precision measurement of the Ξ ++cc mass, J. High Energy Phys. 02, 049 (2020), arXiv: 1911.08594

    ADS  Google Scholar 

  274. LHCb Collaboration, R. Aaij, et al., Search for the doubly charmed baryon Ξ ++cc Sci. China Phys. Mech. Astron. 63, 221062 (2020), arXiv: 1909.12273

    Article  ADS  Google Scholar 

  275. LHCb Collaboration, R. Aaij, et al., Search for the doubly charmed baryon Ω +cc , Sci. China Phys. Mech. Astron. 64, 101062 (2021), arXiv: 2105.06841

    Article  ADS  Google Scholar 

  276. LHCb Collaboration, R. Aaij, et al., Search for the doubly charmed baryon Ξ ++cc in the Ξ +c ππ+ final state, J. High Energy Phys. 12, 107 (2021), arXiv: 2109.07292

    ADS  Google Scholar 

  277. H.-Z. Tong and H.-S. Li, The chiral corrections to the masses of the doubly heavy baryons, arXiv: 2110.01380 (2021)

  278. H.-S. Li and W.-L. Yang, Spin-3/2 doubly charmed baryon contribution to the magnetic moments of the spin-1/2 doubly charmed baryons, Phys. Rev. D 103, 056024 (2021), arXiv: 2012.14596

    Article  ADS  Google Scholar 

  279. J.-B. Wang, et al., Ωcc resonances with negative parity in the chiral constituent quark model, Phys. Rev. D 104, 094008 (2021), arXiv: 2110.06408

    Article  ADS  Google Scholar 

  280. M.-S. Liu, Q.-F. Lü, and X.-H. Zhong, Triply charmed and bottom baryons in a constituent quark model, Phys. Rev. D 101, 074031 (2020), arXiv: 1912.11805

    Article  ADS  Google Scholar 

  281. J. M. Dias, et al., Ξbb and Ξbbb molecular states, Chin. Phys. C 44 (2020) 064101, arXiv: 1912.04517

    Article  ADS  Google Scholar 

  282. Q.-X. Yu, J. M. Dias, W.-H. Liang, and E. Oset, Molecular Ξbc states from meson-baryon interaction, Eur. Phys. J. C 79, 1025 (2019), arXiv: 1909.13449

    Article  ADS  Google Scholar 

  283. Q. Li, C.-H. Chang, S.-X. Qin, and G.-L. Wang, Mass spectra and wave functions of the doubly heavy baryons with JP = 1+ heavy diquark cores, Chin. Phys. C 44, 013102 (2020), arXiv: 1903.02282

    Article  ADS  Google Scholar 

  284. H.-X. Chen, et al., Establishing low-lying doubly charmed baryons, Phys. Rev. D 96, 031501 (2017), Erratum: Phys. Rev. D 96, 119902 (2017), arXiv: 1707.01779

    Article  ADS  Google Scholar 

  285. C.-Y. Wang, C. Meng, Y.-Q. Ma, and K.-T. Chao, NLO effects for doubly heavy baryons in QCD sum rules, Phys. Rev. D 99, 014018 (2019), arXiv: 1708.04563

    Article  ADS  Google Scholar 

  286. T. Guo, J. Li, J. Zhao, and L. He, Mass spectra of doubly heavy tetraquarks in an improved chromomagnetic interaction model, arXiv: 2108.10462 (2021)

  287. Q. Qin, et al., Inclusive approach to hunt for the beauty-charmed baryons Ξbc, Phys. Rev. D 105, L031902 (2022), arXiv: 2108.06716

    Article  ADS  Google Scholar 

  288. D. Gao, et al., Masses of doubly heavy tetraquark states with isospin = 1/2 and 1 and spin-parity 1, arXiv: 2007.15213 (2020)

  289. X.-Z. Weng, X.-L. Chen, and W.-Z. Deng, Masses of doubly heavy-quark baryons in an extended chromomagnetic model, Phys. Rev. D 97, 054008 (2018), arXiv: 1801.08644

    Article  ADS  Google Scholar 

  290. J.-J. Han, et al., Weak decays of bottom-charm baryons: \({{\cal B}_{bc}} \to {{\cal B}_b}P\), Eur. Phys. J. C 81, 539 (2021), arXiv: 2102.00961

    Article  ADS  Google Scholar 

  291. D.-M. Li, X.-R. Zhang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Four-body nonleptonic decay channels, Eur. Phys. J. Plus 136, 772 (2021), arXiv: 2101.12574

    Article  Google Scholar 

  292. J.-J. Han, et al., Rescattering mechanism of weak decays of double-charm baryons, Chin. Phys. C 45, 053105 (2021), arXiv: 2101.12019

    Article  ADS  Google Scholar 

  293. Z.-G. Wang, Analysis of the triply-heavy baryon states with the QCD sum rules, AAPPS Bull. 31, 5 (2021), arXiv: 2010.08939

    Article  ADS  Google Scholar 

  294. L.-Y. Xiao, Q.-F. Lü, and S.-L. Zhu, Strong decays of the 1P and 2D doubly charmed states, Phys. Rev. D 97, 074005 (2018), arXiv: 1712.07295

    Article  ADS  Google Scholar 

  295. Y.-J. Shi, W. Wang, and Z.-X. Zhao, QCD sum rules analysis of weak decays of doubly-heavy baryons, Eur. Phys. J. C 80, 568 (2020), arXiv: 1902.01092

    Article  ADS  Google Scholar 

  296. H.-Y. Cheng and F. Xu, Lifetimes of doubly heavy baryons \({{\cal B}_{bb}}\) and \({{\cal B}_{bc}}\), Phys. Rev. D 99, 073006 (2019), arXiv: 1903.08148

    Article  ADS  Google Scholar 

  297. Q.-A. Zhang, Weak decays of doubly heavy baryons: W-exchange, Eur. Phys. J. C 78, 1024 (2018), arXiv: 1811.02199

    Article  ADS  Google Scholar 

  298. L.-J. Jiang, B. He, and R.-H. Li, Weak decays of doubly heavy baryons: \({{\cal B}_{cc}} \to {{\cal B}_c}V\), Eur. Phys. J. C 78, 961 (2018), arXiv: 1810.00541

    Article  ADS  Google Scholar 

  299. Z.-X. Zhao, Weak decays of heavy baryons in the light-front approach, Chin. Phys. C 42, 093101 (2018), arXiv: 1803.02292

    Article  ADS  Google Scholar 

  300. W. Wang and J. Xu, Weak decays of triply heavy baryons, Phys. Rev. D 97, 093007 (2018), arXiv: 1803.01476

    Article  ADS  Google Scholar 

  301. E.-L. Cui, et al., Suggested search for doubly charmed baryons of JP = 3/2+ via their electromagnetic transitions, Phys. Rev. D 97, 034018 (2018), arXiv: 1712.03615

    Article  ADS  Google Scholar 

  302. Y.-J. Shi, W. Wang, Y. Xing, and J. Xu, Weak decays of doubly heavy baryons: Multi-body decay channels, Eur. Phys. J. C 78, 56 (2018), arXiv: 1712.03830

    Article  ADS  Google Scholar 

  303. L. Meng, H.-S. Li, Z.-W. Liu, and S.-L. Zhu, Magnetic moments of the spin-3/2 doubly heavy baryons, Eur. Phys. J. C 77, 869 (2017), arXiv: 1710.08283

    Article  ADS  Google Scholar 

  304. C. Q. Geng, Y. K. Hsiao, C.-W. Liu, and T.-H. Tsai, Charmed baryon weak decays with SU(3) flavor symmetry, J. High Energy Phys. 11, 147 (2017), arXiv: 1709.00808

    Article  ADS  Google Scholar 

  305. Q.-F. Lü, K.-L. Wang, L.-Y. Xiao, and X.-H. Zhong, Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model, Phys. Rev. D 96, 114006 (2017), arXiv: 1708.04468

    Article  ADS  Google Scholar 

  306. L.-Y. Xiao, et al., Strong and radiative decays of the doubly charmed baryons, Phys. Rev. D 96, 094005 (2017), arXiv: 1708.04384

    Article  ADS  Google Scholar 

  307. H.-S. Li, L. Meng, Z.-W. Liu, and S.-L. Zhu, Radiative decays of the doubly charmed baryons in chiral perturbation theory, Phys. Lett. B 777, 169 (2018), arXiv: 1708.03620

    Article  ADS  Google Scholar 

  308. W. Wang, Z.-P. Xing, and J. Xu, Weak decays of doubly heavy baryons: SU(3) analysis, Eur. Phys. J. C 77, 800 (2017), arXiv: 1707.06570

    Article  ADS  Google Scholar 

  309. W. Wang, F.-S. Yu, and Z.-X. Zhao, Weak decays of doubly heavy baryons: The 1/2 → 1/2 case, Eur. Phys. J. C 77, 781 (2017), arXiv: 1707.02834

    Article  ADS  Google Scholar 

  310. F.-S. Yu, et al., Discovery potentials of doubly charmed baryons, Chin. Phys. C 42, 051001 (2018), arXiv: 1703.09086

    Article  ADS  Google Scholar 

  311. G.-Y. Chen, W.-S. Huo, and Q. Zhao, Identifying the structure of near-threshold states from the line shape, Chin. Phys. C 39, 093101 (2015), arXiv: 1309.2859

    Article  ADS  Google Scholar 

  312. Z.-Y. Wang, J.-J. Qi, X.-H. Guo, and C. Wang, X(3872) as a molecular \(D{\overline D ^ * }\) state in the Bethe-Salpeter equation approach, Phys. Rev. D 97, 016015 (2018), arXiv: 1710.07424

    Article  ADS  Google Scholar 

  313. J.-B. Cheng, et al., Double-heavy tetraquark states with heavy diquark-antiquark symmetry, Chin. Phys. C 45, 043102 (2021), arXiv: 2008.00737

    Article  ADS  Google Scholar 

  314. Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly heavy tetraquarks Tqq′ in a relativized quark model, Phys. Rev. D 102, 034012 (2020), arXiv: 2006.08087

    Article  ADS  Google Scholar 

  315. Y.-J. Shi, W. Wang, Z.-X. Zhao, and U.-G. Meißner, Towards a heavy diquark effective theory for weak decays of doubly heavy baryons, Eur. Phys. J. C 80, 398 (2020), arXiv: 2002.02785

    Article  ADS  Google Scholar 

  316. H.-T. An, et al., Exotic pentaquark states with the \(qqQQ\overline Q \) configuration, Phys. Rev. D 100, 056004 (2019), arXiv: 1905.07858

    Article  ADS  Google Scholar 

  317. L. Meng and S.-L. Zhu, Light pseudoscalar meson and doubly charmed baryon scattering lengths with heavy diquark-antiquark symmetry, Phys. Rev. D 100, 014006 (2019), arXiv: 1811.07320

    Article  ADS  Google Scholar 

  318. Q.-S. Zhou, et al., Surveying exotic pentaquarks with the typical \(QQqq\bar q\) configuration, Phys. Rev. C 98, 045204 (2018), arXiv: 1801.04557

    Article  ADS  Google Scholar 

  319. K. Chen, et al., Triply heavy tetraquark states with the \(QQ\overline {Qq} \) configuration, Eur. Phys. J. A 53, 5 (2017), arXiv: 1609.06117

    Article  ADS  Google Scholar 

  320. X.-K. Dong, F.-K. Guo, and B. S. Zou, Near threshold structures and hadronic molecules, Few Body Syst. 62, 61 (2021)

    Article  ADS  Google Scholar 

  321. Z.-M. Ding, H.-Y. Jiang, D. Song, and J. He, Hidden and doubly heavy molecular states from interactions \(D_{\left( s \right)}^{\left( * \right)}D_s^{\left( * \right)}/B_{\left( s \right)}^{\left( * \right)}B_s^{\left( * \right)}\,\,\,{\rm{and}}\,\,\,D_{\left( s \right)}^{\left( * \right)}D_{\left( s \right)}^{\left( * \right)}/B_{\left( s \right)}^{\left( * \right)}B_s^{\left( * \right)}\), Eur. Phys. J. C 81, 732 (2021), arXiv: 2107.00855

    Article  ADS  Google Scholar 

  322. X. Chen, The genuine resonance of full-charm tetraquarks, Universe 7, 155 (2021)

    Article  ADS  Google Scholar 

  323. G. Yang, J. Ping, and J. Segovia, QQ tetraquarks in the chiral quark model, Phys. Rev. D 102, 054023 (2020), arXiv: 2007.05190

    Article  ADS  Google Scholar 

  324. Belle Collaboration, S. K. Choi, et al., Observation of a narrow charmoniumlike state in exclusive \({B^ \pm } \to {K^ \pm }{{\rm{\pi }}^ \pm }{{\rm{\pi }}^ - }J/\psi \) decays, Phys. Rev. Lett. 91, 262001 (2003), arXiv: hep-ex/0309032

    Article  Google Scholar 

  325. LHCb Collaboration, R. Aaij, et al., Quantum numbers of the X(3872) state and orbital angular momentum in its ρ0 J/ψ decays, Phys. Rev. D 92, 011102(R) (2015), arXiv: 1504.06339

    Article  ADS  Google Scholar 

  326. Particle Data Group, P. A. Zyla, et al., Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  327. LHCb Collaboration, R. Aaij, et al., Study of the line shape of the ηc1(3872) state, Phys. Rev. D 102, 092005 (2020), arXiv: 2005.13419

    Article  ADS  Google Scholar 

  328. LHCb Collaboration, R. Aaij, et al., Study of the ψ2(3823) and χc1(3872) states in B+(J/ψπ+π) K+ decays, J. High Energy Phys. 08, 123 (2020), arXiv: 2005.13422

    Article  ADS  Google Scholar 

  329. LHCb Collaboration, R. Aaij, et al., Evidence for the decay X(3872) → ψ(2S)γ, Nucl. Phys. B 886, 665 (2014), arXiv: 1404.0275

    Article  Google Scholar 

  330. LHCb Collaboration, R. Aaij, et al., Observation of sizeable ω contribution to χc1→π+ψJ/ψ decays, arXiv: 2204.12597 (submitted to Phys. Rev. Lett.)

  331. Z.-H. Zhang and F.-K. Guo, D±D*± hadronic atom as a key to revealing the X(3872) mystery, Phys. Rev. Lett. 127, 012002 (2021), arXiv: 2012.08281

    Article  ADS  Google Scholar 

  332. L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Revisit the isospin violating decays of X(3872), Phys. Rev. D 104, 094003 (2021), arXiv: 2109.01333

    Article  ADS  Google Scholar 

  333. L. He, K. Ingles, E. Braaten, and J. Jiang, Triangle singularities in the production of X(3872), PoS CHARM 2020, 027 (2021)

    Google Scholar 

  334. L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Diquark-antidiquarks with hidden or open charm and the nature of X(3872), Phys. Rev. D 71, 014028 (2005), arXiv: hep-ph/0412098

    Article  ADS  Google Scholar 

  335. Z.-G. Wang and T. Huang, Analysis of the X(3872), Zc(3900) and Zc(3885) as axial-vector tetraquark states with QCD sum rules, Phys. Rev. D 89, 054019 (2014), arXiv: 1310.2422

    Article  ADS  Google Scholar 

  336. W. Chen and S.-L. Zhu, Vector and axial-vector charmoniumlike states, Phys. Rev. D 83, 034010 (2011), arXiv: 1010.3397

    Article  ADS  Google Scholar 

  337. B. A. Li, Is X(3872) a possible candidate of as a hybrid meson, Phys. Lett. B 605, 306 (2005), arXiv: hep-ph/ 0410264

    Article  ADS  Google Scholar 

  338. F.-K. Guo, C. Hanhart, Q. Wang, and Q. Zhao, Could the near-threshold XYZ states be simply kinematic effects? Phys. Rev. D 91, 051504 (2015), arXiv: 1411.5584

    Article  ADS  Google Scholar 

  339. F.-K. Guo, et al., Production of the X(3872) in charmonia radiative decays, Phys. Lett. B 725, 127 (2013), arXiv: 1306.3096

    Article  ADS  Google Scholar 

  340. C. Meng and K.-T. Chao, Decays of the X(3872) and χc1(2P) charmonium state, Phys. Rev. D 75, 114002 (2007), arXiv: hep-ph/0703205

    Article  ADS  Google Scholar 

  341. F.-K. Guo, et al., Interplay of quark and meson degrees of freedom in near-threshold states: A practical parametrization for line shapes, Phys. Rev. D 93 (2016) 074031, arXiv: 1602.00940

    Article  ADS  Google Scholar 

  342. S.-Q. Luo, et al., Exotic tetraquark states with the \(qq\overline {QQ} \) configuration, Eur. Phys. J. C 77, 709 (2017), arXiv: 1707.01180

    Article  ADS  Google Scholar 

  343. X.-W. Kang and J. A. Oller, Different pole structures in line shapes of the X(3872), Eur. Phys. J. C 77, 399 (2017), arXiv: 1612.08420

    Article  ADS  Google Scholar 

  344. C. Z. Yuan, P. Wang, and X. H. Mo, The Y(4260) as an ωχcl molecular state, Phys. Lett. B 634, 399 (2006), arXiv: hep-ph/0511107

    Article  ADS  Google Scholar 

  345. Y. Cui, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Possible heavy tetraquarks \(qQ\overline q \overline Q \) and \(qQ\overline q \overline Q ,qq\overline {QQ} \), High Energy Phys. Nucl. Phys. 31, 7 (2007), arXiv: hep-ph/0607226

    Google Scholar 

  346. C. Meng, Y.-J. Gao, and K.-T. Chao, B→χc1(1P, 2P)K decays in QCD factorization and X(3872), Phys. Rev. D 87, 074035 (2013), arXiv: hep-ph/0506222

    Article  ADS  Google Scholar 

  347. J.-R. Zhang and M.-Q. Huang, \(\left\{ {Q\overline q } \right\}\,\left\{ {{{\overline Q }^{\left( ' \right)}}q} \right\}\) molecular states, Phys. Rev. D 80, 056004 (2009), arXiv: 0906.0090

    Article  ADS  Google Scholar 

  348. O. Zhang, C. Meng, and H. Q. Zheng, Ambiversion of X(3872), Phys. Lett. B 680, 453 (2009), arXiv: 0901.1553

    Article  ADS  Google Scholar 

  349. C. Meng, H. Han, and K.-T. Chao, X(3872) and its production at hadron colliders, Phys. Rev. D 96, 074014 (2017), arXiv: 1304.6710

    Article  ADS  Google Scholar 

  350. G.-J. Ding, J.-F. Liu, and M.-L. Yan, Dynamics of hadronic molecule in one-boson exchange approach and possible heavy flavor molecules, Phys. Rev. D 79, 054005 (2009), arXiv: 0901.0426

    Article  ADS  Google Scholar 

  351. H.-X. Chen, et al., QCD sum rule study of hidden-charm pentaquarks, Eur. Phys. J. C 76, 572 (2016), arXiv: 1602.02433

    Article  ADS  Google Scholar 

  352. N. Li and S.-L. Zhu, Isospin breaking, coupled-channel effects and diagnosis of X(3872), Phys. Rev. D 86, 074022 (2012), arXiv: 1207.3954

    Article  ADS  Google Scholar 

  353. M.-Z. Liu, et al., Heavy-quark spin and avor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model? Phys. Rev. D 99, 094018 (2019), arXiv: 1902.03044

    Article  ADS  Google Scholar 

  354. W. Chen, et al., QCD sum-rule interpretation of X(3872) with JPC = 1++ mixtures of hybrid charmonium and \(\overline D {D^*}\) molecular currents, Phys. Rev. D 88 (2013) 045027, arXiv: 1305.0244

    Article  ADS  Google Scholar 

  355. X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy-antiheavy hadronic molecules, Prog. Phys. 41 (2021) 65, arXiv: 2101.01021

    Google Scholar 

  356. F.-K. Guo, et al., What can radiative decays of the X(3872) teach us about its nature? Phys. Lett. B 742, 394 (2015), arXiv: 1410.6712

    Article  ADS  Google Scholar 

  357. F.-K. Guo, Novel method for precisely measuring the X(3872) mass, Phys. Rev. Lett. 122, 202002 (2019), arXiv: 1902.11221

    Article  ADS  Google Scholar 

  358. L. Zhao, L. Ma, and S.-L. Zhu, Spin-orbit force, recoil corrections, and possible \(B{\overline B ^*}\) and \(D{\overline D ^*}\) molecular states, Phys. Rev. D 89, 094026 (2014), arXiv: 1403.4043

    Article  ADS  Google Scholar 

  359. Y.-R. Liu and Z.-Y. Zhang, X(3872) and the bound state problem of \({D^0}{\overline D ^{*0}}\,\left( {{{\overline D }^0}{D^{*0}}} \right)\) in a chiral quark model, Phys. Rev. C 79, 035206 (2009), arXiv: 0805.1616

    Article  ADS  Google Scholar 

  360. H.-W. Ke, et al., Is Zb(10610) a molecular state? J. High Energy Phys. 04, 056 (2012), arXiv: 1202.2178

    Article  ADS  Google Scholar 

  361. L. Geng, J. Lu, and M. P. Valderrama, Scale invariance in heavy hadron molecules, Phys. Rev. D 97, 094036 (2018), arXiv: 1704.06123

    Article  ADS  Google Scholar 

  362. C. Meng, et al., Refined analysis on the X(3872) resonance, Phys. Rev. D 92, 034020 (2015), arXiv: 1411.3106

    Article  ADS  Google Scholar 

  363. R. Chen, A. Hosaka, and X. Liu, Heavy molecules and one-σ/ω-exchange model, Phys. Rev. D 96, 116012 (2017), arXiv: 1707.08306

    Article  ADS  Google Scholar 

  364. L.-L. Shen, et al., The molecular systems composed of the charmed mesons in the \(H\overline S + h.c.\) doublet, Eur. Phys. J. C 70, 183 (2010), arXiv: 1005.0994

    Article  ADS  Google Scholar 

  365. H. X. Zhang, M. Zhang, and Z. Y. Zhang, \(Qq\overline Q \overline q \prime \) states in chiral SU(3) quark model, Chin. Phys. Lett. 24, 2533 (2007), arXiv: 0705.2470

    Article  ADS  Google Scholar 

  366. T. Wang, G.-L. Wang, Y. Jiang, and W.-L. Ju, Electromagnetic decay of X(3872) as the 11 D2(2−+) charmonium, J. Phys. G 40, 035003 (2013), arXiv: 1205.5725

    Article  ADS  Google Scholar 

  367. W. Wang and Q. Zhao, Decipher the short-distance component of X(3872) in Bc decays, Phys. Lett. B 755, 261 (2016), arXiv: 1512.03123

    Article  ADS  Google Scholar 

  368. Y.-C. Yang, Z.-Y. Tan, J. Ping, and H.-S. Zong, Possible \({D^{\left( * \right)}}{\overline D ^{\left( * \right)}}\) and \({B^{\left( * \right)}}{\overline B ^{\left( * \right)}}\) molecular states in the extended constituent quark models, Eur. Phys. J. C 77, 575 (2017), arXiv: 1703.09718

    Article  ADS  Google Scholar 

  369. Z.-R. Liang, X.-Y. Wu, and D.-L. Yao, Hunting for states in the recent LHCb di-J/ψ invariant mass spectrum, Phys. Rev. D 104, 034034 (2021), arXiv: 2104.08589

    Article  ADS  Google Scholar 

  370. B.-X. Sun, D.-M. Wan, and S.-Y. Zhao, The \(D{\overline D ^*}\) interaction with isospin zero in an extended hidden gauge symmetry approach, Chin. Phys. C 42, 053105 (2018), arXiv: 1709.07263

    Article  ADS  Google Scholar 

  371. S.-H. Yu, B.-K. Wang, X.-L. Chen, and W.-Z. Deng, Study the Heavy molecular states in quark model with meson exchange interaction, Chin. Phys. C 36, 25 (2012), arXiv: 1104.4535

    Article  ADS  Google Scholar 

  372. H.-Y. Cao and H.-Q. Zhou, Decay widths of 3PJ charmonium to DD, DD*, D*D* and corresponding mass shifts of 3PJ charmonium, Eur. Phys. J. C 80, 975 (2020), arXiv: 2008.11324

    Article  ADS  Google Scholar 

  373. C.-F. Qiao and L. Tang, Molecular states with hidden charm and strange in QCD sum rules, Europhys. Lett. 107, 31001 (2014), arXiv: 1309.7596

    Article  ADS  Google Scholar 

  374. Belle Collaboration, S. K. Choi, et al., Observation of a resonance-like structure in the π±ψ′ mass distribution in exclusive B→Kπ±ψ′ decays, Phys. Rev. Lett. 100, 142001 (2008), arXiv: 0708.1790

    Article  Google Scholar 

  375. LHCb Collaboration, T. Gershon, Exotic hadron naming convention, arXiv: 2206.15233 (2022)

  376. LHCb Collaboration, R. Aaij, et al., Observation of the resonant character of the Z(4430) state, Phys. Rev. Lett. 112, 222002 (2014), arXiv: 1404.1903

    Article  ADS  Google Scholar 

  377. BESIII collaboration, M. Ablikim et al., Observation of a charged charmoniumlike structure in e+eπ+πJ/ψ at \(\sqrt s = 4.26\,{\rm{GeV}}\), Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949

    Article  Google Scholar 

  378. Q. Wu and D.-Y. Chen, Exploration of the hidden charm decays of Zcs(3985), Phys. Rev. D 104, 074011 (2021), arXiv: 2108.06700

    Article  ADS  Google Scholar 

  379. F.-L. Wang, X.-D. Yang, R. Chen, and X. Liu, Correlation of the hidden-charm molecular tetraquarks and the charmoniumlike structures existing in the B → XYZ + K process, Phys. Rev. D 104, 094010 (2021), arXiv: 2103.04698

    Article  ADS  Google Scholar 

  380. Y. Zhang, E. Wang, D.-M. Li, and Y.-X. Li, Search for the \({D^*}{\overline D ^*}\) molecular state Zc(4000) in the reaction B′ \( \to \,J/\psi {\rho ^0}{K^ - }\), Chin. Phys. C 44, 093107 (2020), arXiv: 2001.06624

    Article  ADS  Google Scholar 

  381. L.-Y. Xiao, G.-J. Wang, and S.-L. Zhu, Hidden-charm strong decays of the Zc states, Phys. Rev. D 101, 054001 (2020), arXiv: 1912.12781

    Article  ADS  Google Scholar 

  382. J. He and D.-Y. Chen, Interpretation of Y(4390) as an isoscalar partner of Z(4430) from \({D^*}\left( {2010} \right){\overline D _1}\left( {2420} \right)\) interaction, Eur. Phys. J. C 77, 398 (2017), arXiv: 1704.08776

    Article  ADS  Google Scholar 

  383. W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Mass spectra of Zc and Zb exotic states as hadron molecules, Phys. Rev. D 92, 054002 (2015), arXiv: 1505.05619

    Article  ADS  Google Scholar 

  384. W. Chen, T. G. Steele, H.-X. Chen, and S.-L. Zhu, Zc(4200)+ decay width as a charmonium-like tetraquark state, Eur. Phys. J. C 75, 358 (2015), arXiv: 1501.03863

    Article  ADS  Google Scholar 

  385. X.-H. Liu, et al., Resolving the puzzling decay patterns of charged Zc and Zb states, Phys. Rev. D 90, 074020 (2014), arXiv: 1407.3684

    Article  ADS  Google Scholar 

  386. L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Strong decays of the XYZ states, Phys. Rev. D 91, 034032 (2015), arXiv: 1406.6879

    Article  ADS  Google Scholar 

  387. Z.-G. Wang, Analysis of the Z(4430) as the first radial excitation of the Zc(3900), Commun. Theor. Phys. 63, 325 (2015), arXiv: 1405.3581

    Article  ADS  Google Scholar 

  388. L. Ma, X.-H. Liu, X. Liu, and S.-L. Zhu, Exotic four quark matter: Z1(4475), Phys. Rev. D 90, 037502 (2014), arXiv: 1404.3450

    Article  ADS  Google Scholar 

  389. H.-W. Ke, Z.-T. Wei, and X.-Q. Li, Is Zc(3900) a molecular state, Eur. Phys. J. C 73, 2561 (2013), arXiv: 1307.2414

    Article  ADS  Google Scholar 

  390. L. Zhao, W.-Z. Deng, and S.-L. Zhu, Hidden-Charm Tetraquarks and charged Zc states, Phys. Rev. D 90, 094031 (2014), arXiv: 1408.3924

    Article  ADS  Google Scholar 

  391. Q.-R. Gong, et al., Zc(3900) as a DD molecule from the pole counting rule, Phys. Rev. D 94, 114019 (2016), arXiv: 1604.08836

    Article  ADS  Google Scholar 

  392. L.-C. Gui, et al., Strong decays of higher charmonium states into open-charm meson pairs, Phys. Rev. D 98, 016010 (2018), arXiv: 1801.08791

    Article  ADS  Google Scholar 

  393. Z.-G. Wang, Analysis of the hidden-charm tetraquark mass spectrum with the QCD sum rules, Phys. Rev. D 102, 014018 (2020), arXiv: 1908.07914

    Article  ADS  Google Scholar 

  394. J. He and P.-L. Lü, \({D^*}{\overline D _1}\left( {2420} \right)\) and \(D{\overline D ^{'*}}\) (2600) interactions and the charged charmonium-like state Z(4430), Chin. Phys. C 40, 043101 (2016), arXiv: 1410.8645

    Article  ADS  Google Scholar 

  395. Y.-R. Liu and Z.-Y. Zhang, A chiral quark model study of Z+(4430) in the molecular picture, arXiv: 0908.1734 (2009)

  396. CDF Collaboration, T. Aaltonen, et al., Evidence for a narrow near-threshold structure in the J/ψφ) mass spectrum in B+→J/ψφK+ decays, Phys. Rev. Lett. 102, 242002 (2009), arXiv: 0903.2229

    Article  ADS  Google Scholar 

  397. CDF Collaboration, T. Aaltonen, et al., Observation of the Y(4140) structure in the J/ψφ mass spectrum in B± →J/ψϕK± decays, Mod. Phys. Lett. A 32, 1750139 (2017), arXiv: 1101.6058

    Article  Google Scholar 

  398. CMS Collaboration, S. Chatrchyan, et al., Observation of a peaking structure in the J/ψφ mass spectrum from B± →J/ψφK±; decays, Phys. Lett. B 734, 261 (2014), arXiv: 1309.6920

    Article  ADS  Google Scholar 

  399. B. Hu, et al., Possible heavy molecular states composed of a pair of excited charm-strange mesons, Chin. Phys. C 35, 113 (2011), arXiv: 1004.4032

    Article  ADS  Google Scholar 

  400. Q. Meng, et al., Compact sssc pentaquark states predicted by a quark model, Phys. Lett. B 798, 135028 (2019), arXiv: 1907.00144

    Article  Google Scholar 

  401. LHCb Collaboration, R. Aaij, et al., Observation of exotic J/ψφ structures from amplitude analysis of B± →J/ψφK± decays, Phys. Rev. Lett. 118, 022003 (2017), arXiv: 1606.07895

    Article  ADS  Google Scholar 

  402. Q.-F. Cao, H.-R. Qi, Y.-F. Wang, and H.-Q. Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356

    Article  ADS  Google Scholar 

  403. W. Hao, et al., Canonical interpretation of the Y(4140) state within the 3P0 model, Eur. Phys. J. C 80, 626 (2020), arXiv: 1909.13099

    Article  ADS  Google Scholar 

  404. F.-L. Wang and X. Liu, Exotic double-charm molecular states with hidden or open strangeness and around 4.5-4.7 GeV, Phys. Rev. D 102, 094006 (2020), arXiv: 2008.13484

    Article  ADS  Google Scholar 

  405. D.-Y. Chen and C.-J. Xiao, Strong two-body decays of the S-wave D +s D +s molecule state, Nucl. Phys. A 947}, 26 (20

    Article  ADS  Google Scholar 

  406. Q.-F. Lü and Y.-B. Dong, Y(4140), X(4274), X(4500), and X(4700) in the relativized quark model, Phys. Rev. D 94, 074007 (2016), arXiv: 1607.05570

    Article  ADS  Google Scholar 

  407. J. Wu, et al., X(4140), X(4270), X(4500) and X(4700) and their cscs tetraquark partners, Phys. Rev. D 94, 094031 (2016), arXiv: 1608.07900

    Article  ADS  Google Scholar 

  408. X.-H. Liu, How to understand the underlying structures of X(4140), X(4274), X(4500) and X(4700), Phys. Lett. B 766, 117 (2017), arXiv: 1607.01385

    Article  ADS  Google Scholar 

  409. Z.-G. Wang, Reanalysis of the X(3915), X(4500) and X(4700) with QCD sum rules, Eur. Phys. J. A 53, 19 (2017), arXiv: 1607.04840

    Article  ADS  Google Scholar 

  410. Z.-G. Wang, Reanalysis of the Y(3940), Y(4140), Zc(4020), Zc(4025) and Zb(10650) as molecular states with QCD sum rules, Eur. Phys. J. C 74, 2963 (2014), arXiv: 1403.0810

    Article  ADS  Google Scholar 

  411. J.-R. Zhang and M.-Q. Huang, \({\left( {Q\overline s } \right)^{\left( * \right)}}{\left( {\overline Q s} \right)^{\left( * \right)}}\) molecular states from QCD sum rules: A view on Y(4140), J. Phys. G 37, 025005 (2010), arXiv: 0905.4178

    Article  ADS  Google Scholar 

  412. X. Liu, The hidden charm decay of Y(4140) by the rescattering mechanism, Phys. Lett. B 680, 137 (2009), arXiv: 0904.0136

    Article  ADS  Google Scholar 

  413. H.-X. Chen, et al., Understanding the internal structures of the Y(4140), X(4274), X(4500) and X(4700), Eur. Phys. J. C 77, 160 (2017), arXiv: 1606.03179

    Article  ADS  Google Scholar 

  414. Z.-G. Wang, Analysis of the X(4350) as a scalar cc and \(D_s^*\overline D _s^*\) mixing state with QCD sum rules, Phys. Lett. B 690, 403 (2010), arXiv: 0912.4626

    Article  ADS  Google Scholar 

  415. E. Wang, J.-J. Xie, L.-S. Geng, and E. Oset, Analysis of the B+J/ψφK+ data at low J/ψϕ invariant masses and the X(4140) and X(4160) resonances, Phys. Rev. D 97, 014017 (2018), arXiv: 1710.02061

    Article  ADS  Google Scholar 

  416. J. He and P.-L. Lü, Understanding Y(4274) and X(4320) in the J/ψφ invariant mass spectrum, Nucl. Phys. A 919, 1 (2013), arXiv: 1309.6718

    Article  ADS  Google Scholar 

  417. J. Ferretti, E. Santopinto, M. N. Anwar, and Y. Lu, Quark structure of the χc(3P) and X(4274) resonances and their strong and radiative decays, Eur. Phys. J. C 80, 464 (2020), arXiv: 2002.09401

    Article  ADS  Google Scholar 

  418. C. Deng, H. Chen, and J. Ping, Can the state Y(4626) be a P-wave tetraquark state \(\left[ {cs} \right]\left[ {\overline c \overline s } \right]\)? Phys. Rev. D 101, 054039 (2020), arXiv: 1912.07174

    Article  ADS  Google Scholar 

  419. Z.-G. Wang, X.-S. Yang, and Q. Xin, Tetraquark molecular states in the \({D_s}{\overline D _{s1}}\) and \(D_s^*\overline D _{s0}^*\) mass spectrum, Int. J. Mod. Phys. A 36, 2150202 (2021), arXiv: 2106.12400

    Article  ADS  Google Scholar 

  420. P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm tetraquark states in a diquark model, Phys. Rev. D 103, 094038 (2021), arXiv: 2105.02397

    Article  ADS  Google Scholar 

  421. X. Liu, et al., The explanation of some exotic states in the cs tetraquark system, Eur. Phys. J. C 81, 950 (2021), arXiv: 2103.12425

    Article  ADS  Google Scholar 

  422. Y.-H. Ge, X.-H. Liu, and H.-W. Ke, Threshold effects as the origin of Zcs(4000), Zcs(4220) and X(4700) observed in B+→ J/ψφK+, Eur. Phys. J. C 81, 854 (2021), arXiv: 2103.05282

    Article  ADS  Google Scholar 

  423. X.-D. Yang, F.-L. Wang, Z.-W. Liu, and X. Liu, Newly observed X(4630): A new charmoniumlike molecule, Eur. Phys. J. C 81, 807 (2021), arXiv: 2103.03127

    Article  ADS  Google Scholar 

  424. Z. Yang, et al., Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725

    Article  ADS  Google Scholar 

  425. Q.-N. Wang, W. Chen, and H.-X. Chen, Exotic \(\overline D _s^{\left( * \right)}{D^{\left( * \right)}}\) molecular states and \(sc\overline {qc} \) tetraquark states with JP = 0+, 1+, 2+, Chin. Phys. C 45, 093102 (2021), arXiv: 2011.10495

    Article  ADS  Google Scholar 

  426. D.-Y. Chen, X. Liu, and T. Matsuki, Predictions of charged charmoniumlike structures with hidden-charm and open-strange channels, Phys. Rev. Lett. 110, 232001 (2013), arXiv: 1303.6842

    Article  ADS  Google Scholar 

  427. X. Jin, et al., Strange hidden-charm tetraquarks in constituent quark models, arXiv: 2011.12230 (2020)

  428. Z. Liu, Four-quark matter — a new era of spectroscopy, AAPPS Bull. 31, 8 (2021)

    Article  ADS  Google Scholar 

  429. LHCb Collaboration, R. Aaij, et al., Observation of new resonances decaying to J/ψK+ and J/ψφ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803

    Article  ADS  Google Scholar 

  430. BESIII Collaboration, M. Ablikim, et al., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e→ K+(D s D*0 +Ds*D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855

    Article  ADS  Google Scholar 

  431. LHCb Collaboration, R. Aaij, et al., TBD, LHCb-PAPER-2022-040 (in preparation)

  432. X. Cao and Z. Yang, Hunting for the heavy quark spin symmetry partner of Zcs, arXiv: 2110.09760 (2021)

  433. M.-Y. Duan, et al., Revisiting the Zc(4025) structure observed by BESIII in \({e^ + }{e^ - } \to {\left( {{D^*}{{\overline D }^*}} \right)^{ \pm ,0}}{\pi ^{ \pm ,0}}\) at \(\sqrt s = 4.26\,{\rm{GeV}}\), Phys. Rev. D 104, 074030 (2021), arXiv: 2109.00731

    Article  ADS  Google Scholar 

  434. LHCb Collaboration, R. Aaij, et al., Model-independent study of structure in B+D+ DK+ decays, Phys. Rev. Lett. 125, 242001 (2020), arXiv: 2009.00025

    Article  ADS  Google Scholar 

  435. LHCb collaboration, R. Aaij et al., Amplitude analysis of the B+ → D+DK+ decay, Phys. Rev. D 102, 112003 (2020), arXiv: 2009.00026

    Article  ADS  Google Scholar 

  436. Y.-K. Chen, et al., Branching fractions of B → D−X0,1(2900) and their implications, Eur. Phys. J. C 81, 71 (2021), arXiv: 2009.01182

    Article  ADS  Google Scholar 

  437. LHCb Collaboration, R. Aaij, et al., TBD, LHCb-PAPER-2022-026, arXiv: 2212.02716 (submitted to Phys. Rev. Lett.)

  438. LHCb Collaboration, R. Aaij, et al., TBD, LHCb-PAPER-2022-027, arXiv: 2212.02717 (submitted to Phys. Rev. D)

  439. Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Open charm and bottom tetraquarks in an extended relativized quark model, Phys. Rev. D 102, 074021 (2020), arXiv: 2008.07340

    Article  ADS  Google Scholar 

  440. M.-Z. Liu, J.-J. Xie, and L.-S. Geng, X0(2866) as a \({D^*}{\overline K ^*}\) molecular state, Phys. Rev. D 102, 091502 (2020), arXiv: 2008.07389

    Article  ADS  Google Scholar 

  441. M.-W. Hu, X.-Y. Lao, P. Ling, and Q. Wang, X0(2900) and its heavy quark spin partners in molecular picture, Chin. Phys. C 45, 021003 (2021), arXiv: 2008.06894

    Article  ADS  Google Scholar 

  442. Y. Tan and J. Ping, X(2900) in a chiral quark model, Chin. Phys. C 45, 093104 (2021), arXiv: 2010.04045

    Article  ADS  Google Scholar 

  443. X.-K. Dong and B.-S. Zou, Prediction of possible DK1 bound states, Eur. Phys. J. A 57, 139 (2021), arXiv: 2009.11619

    Article  ADS  Google Scholar 

  444. L. R. Dai, J.-J. Xie, and E. Oset, \({B^0} \to {D^0}{\overline D ^0}{K^0},\,{B^ + } \to {D^0}{D^0}{K^ + }\), and the scalar \(D\overline D \) bound state, Eur. Phys. J. C 76, 121 (2016), arXiv: 1512.04048

    Article  ADS  Google Scholar 

  445. J.-B. Cheng, et al., Spectrum and rearrangement decays of tetraquark states with four different flavors, Phys. Rev. D 101, 114017 (2020), arXiv: 2001.05287

    Article  ADS  Google Scholar 

  446. B.Wang and S.-L. Zhu, How to understand the X(2900)? arXiv: 2107.09275 (2021)

  447. Z.-G. Wang, Analysis of the X0(2900) as the scalar tetraquark state via the QCD sum rules, Int. J. Mod. Phys. A 35, 2050187 (2020), arXiv: 2008.07833

    Article  ADS  Google Scholar 

  448. Y. Huang, J.-X. Lu, J.-J. Xie, and L.-S. Geng, Strong decays of \({\overline D ^*}{K^*}\) molecules and the newly observed X0,1 states, Eur. Phys. J. C 80, 973 (2020), arXiv: 2008.07959

    Article  ADS  Google Scholar 

  449. X.-G. He, W. Wang, and R. Zhu, Open-charm tetraquark Xc and open-bottom tetraquark Xb, Eur. Phys. J. C 80, 1026 (2020), arXiv: 2008.07145

    Article  ADS  Google Scholar 

  450. H.-X. Chen, W. Chen, R.-R. Dong, and N. Su, X0(2900) and X1(2900): Hadronic molecules or compact tetraquarks, Chin. Phys. Lett. 37, 101201 (2020), arXiv: 2008.07516

    Article  ADS  Google Scholar 

  451. J.-R. Zhang, Open-charm tetraquark candidate: Note on X0(2900), Phys. Rev. D 103, 054019 (2021), arXiv: 2008.07295

    Article  ADS  MathSciNet  Google Scholar 

  452. X.-H. Liu, et al., Triangle singularity as the origin of X0(2900) and X1(2900) observed in B+D+DK+, Eur. Phys. J. C 80, 1178 (2020), arXiv: 2008.07190

    Article  ADS  Google Scholar 

  453. LHCb Collaboration, R. Aaij, et al., Observation of a resonant structure near the Ds/+Ds/− threshold in the B+ → Ds/+Ds/−K+ decay, arXiv: 2210.15153 (submitted to Phys. Rev. Lett.)

  454. LHCb Collaboration, R. Aaij, et al., First observation of the B+Ds/+Ds/−K+ decay, arXiv: 2211.05034 (submitted to Phys. Rev. D)

  455. Y. Yang, C. Deng, J. Ping, and T. Goldman, S-wave \(QQ\overline q \overline q \) state in the constituent quark model, Phys. Rev. D 80, 114023 (2009)

    Article  ADS  Google Scholar 

  456. LHCb Collaboration, R. Aaij, et al., Observation of an exotic narrow doubly charmed tetraquark, Nat. Phys. 18, 751 (2022), arXiv: 2109.01038

    Article  Google Scholar 

  457. LHCb Collaboration, R. Aaij, et al., Study of the doubly charmed tetraquark T +cc , Nat. Commun. 13, 3351 (2022), arXiv: 2109.01056

    Article  ADS  Google Scholar 

  458. X.-Z. Ling, et al., Can we understand the decay width of the Tcc/+ state? arXiv: 2108.00947 (2021)

  459. L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Probing the long-range structure of the T +cc with the strong and electromagnetic decays, Phys. Rev. D 104, 051502 (2021), arXiv: 2107.14784

    Article  ADS  Google Scholar 

  460. L.-Y. Dai, et al., Pole analysis on the doubly charmed meson in D0D0π+ mass spectrum, Phys. Rev. D 105, L051507 (2022), arXiv: 2108.06002

    Article  ADS  Google Scholar 

  461. N. Li, Z.-F. Sun, X. Liu, and S.-L. Zhu, Perfect DD* molecular prediction matching the Tcc observation at LHCb, Chin. Phys. Lett.} 38}, 092001 (2021}), arXiv: 2107.

    Article  ADS  Google Scholar 

  462. T. Guo, J. Li, J. Zhao, and L. He, Mass spectra and decays of open-heavy tetraquark states, Phys. Rev. D 105, 054018 (2022), arXiv: 2108.06222

    Article  ADS  Google Scholar 

  463. R. Chen, et al., Doubly charmed molecular pentaquarks, Phys. Lett. B 822, 136693 (2021), arXiv: 2108.12730

    Article  Google Scholar 

  464. Y. Xing and Y. Niu, The study of doubly charmed pentaquark ccqqq with the SU(3) symmetry, Eur. Phys. J. C 81, 978 (2021), arXiv: 2106.09939

    Article  ADS  Google Scholar 

  465. H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Heavy flavor pentaquarks with four heavy quarks, Phys. Rev. D 103, 114027 (2021), arXiv: 2106.02837

    Article  ADS  Google Scholar 

  466. C. Deng, H. Chen, and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A 56, 9 (2020), arXiv: 1811.06462

    Article  ADS  Google Scholar 

  467. Z.-G. Wang and Z.-H. Yan, Analysis of the scalar, axialvector, vector, tensor doubly charmed tetraquark states with QCD sum rules, Eur. Phys. J. C 78, 19 (2018), arXiv: 1710.02810

    Article  ADS  Google Scholar 

  468. M. Karliner and J. L. Rosner, Discovery of the doubly-charmed Ξcc baryon implies a stable \(bb\overline u \overline d \) tetraquark, Phys. Rev. Lett. 119, 202001 (2017), arXiv: 1707.07666

    Article  ADS  Google Scholar 

  469. E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons \({Q_i}{Q_j}\overline q k\overline q l\), Phys. Rev. Lett. 119, 202002 (2017), arXiv: 1707.09575

    Article  ADS  Google Scholar 

  470. R. Zhu, Hidden charm octet tetraquarks from a diquark-antidiquark model, Phys. Rev. D 94, 054009 (2016), arXiv: 1607.02799

    Article  ADS  Google Scholar 

  471. G. Yang, J. Ping, and J. Segovia, Doubly-heavy tetraquarks, Phys. Rev. D 101, 014001 (2020), arXiv: 1911.00215

    Article  ADS  Google Scholar 

  472. X. Yan, B. Zhong, and R. Zhu, Doubly charmed tetraquarks in a diquark-antidiquark model, Int. J. Mod. Phys. A 33, 1850096 (2018), arXiv: 1804.06761

    Article  ADS  MathSciNet  Google Scholar 

  473. Y. Tan, W. Lu, and J. Ping, Systematics of \(QQ\overline q \overline q \) in a chiral constituent quark model, Eur. Phys. J. Plus 135, 716 (2020), arXiv: 2004.02106

    Article  Google Scholar 

  474. S.-Y. Kong, J.-T. Zhu, D. Song, and J. He, Heavy-strange meson molecules and possible candidates D*s0(2317), Ds1(2460), and X0(2900), Phys. Rev. D 104, 094012 (2021), arXiv: 2106.07272

    Article  ADS  Google Scholar 

  475. Y.-K. Hsiao and Y. Yu, New X0,1(2900)-like exotic states in &-baryon decays, Phys. Rev. D 104, 034008 (2021), arXiv: 2104.01296

    Article  ADS  Google Scholar 

  476. H.-X. Chen, Hadronic molecules in B decays, Phys. Rev. D 105, 094003 (2022), arXiv: 2103.08586

    Article  ADS  Google Scholar 

  477. X.-K. Dong, et al., Is the existence of a J/ψJ/ψ bound state plausible? Sci. Bull. 66, 2462 (2021), arXiv: 2107.03946

    Article  Google Scholar 

  478. Z.-G. He, B. A. Kniehl, M. A. Nefedov, and V. A. Saleev, Double prompt J/ψ production at hadron colliders, Mod. Phys. Lett. A 36, 2130018 (2021)

    Article  ADS  Google Scholar 

  479. A. J. Majarshin, Y.-A. Luo, F. Pan, and J. Segovia, Bosonic algebraic approach applied to the \(\left[ {QQ} \right]\left[ {\overline Q \overline Q } \right]\) tetraquarks, Phys. Rev. D 105, 054024 (2022), arXiv: 2106.01179

    Article  ADS  Google Scholar 

  480. F.-L. Wang, R. Chen, and X. Liu, A new group of doubly charmed molecule with T-doublet charmed meson pair, Phys. Lett. B 835, 137502 (2022), arXiv: 2111.00208

    Article  Google Scholar 

  481. M.-L. Du, et al., Coupled-channel approach to T +cc including three-body effects, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765

    Article  ADS  Google Scholar 

  482. X.-Z. Ling, M.-Z. Liu, and L.-S. Geng, Masses and strong decays of open charm hexaquark states Σc(*)Σc(*), Eur. Phys. J. C 81, 1090 (2021), arXiv: 2110.13792

    Article  ADS  Google Scholar 

  483. V. Baru, et al., Effective range expansion for narrow near-threshold resonances, Phys. Lett. B 833, 137290 (2022), arXiv: 2110.07484

    Article  Google Scholar 

  484. H. Ren, F. Wu, and R. Zhu, Hadronic molecule interpretation of T +cc and its beauty partners, Adv. High Energy Phys. 2022, 9103031 (2022), arXiv: 2109.02531

    Article  Google Scholar 

  485. Z.-G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B 49, 1781 (2018), arXiv: 1708.04545

    Article  ADS  Google Scholar 

  486. K. Chen, B. Wang, and S.-L. Zhu, Exploration of the doubly charmed molecular pentaquarks, Phys. Rev. D 103, 116017 (2021), arXiv: 2102.05868

    Article  ADS  Google Scholar 

  487. LHCb Collaboration, R. Aaij, et al., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957

    Article  Google Scholar 

  488. Y. Iwasaki, Is a state \(c\overline c c\overline c \) found at 6.0 GeV, Phys. Rev. Lett. 36, 1266 (1976)

    Article  ADS  Google Scholar 

  489. K.-T. Chao, The \(cc - \overline c \overline c \) states in e+e annihilation, Z. Phys. C 7, 317 (1981)

    Article  ADS  Google Scholar 

  490. J.-P. Ader, J.-M. Richard, and P. Taxil, Do narrow heavy multiquark states exist, Phys. Rev. D 25, 2370 (1982)

    Article  ADS  Google Scholar 

  491. B.-A. Li and K.-F. Liu, J/ψ pair production in hadronic collisions, Phys. Rev. D 29, 426 (1984)

    Article  ADS  Google Scholar 

  492. A. M. Badalian, B. L. Ioffe, and A. V. Smilga, Four quark states in heavy quark systems, Nucl. Phys. 281, B85 (1987)

    Article  ADS  Google Scholar 

  493. A. V. Berezhnoy, A. V. Luchinsky, and A. A. Novoselov, Heavy tetraquarks production at the LHC, Phys. Rev. D 86, 034004 (2012), arXiv: 1111.1867

    Article  ADS  Google Scholar 

  494. J. Wu, et al., Heavy-flavored tetraquark states with the \(QQ\overline Q \overline Q \) configuration, Phys. Rev. D 97, 094015 (2018), arXiv: 1605.01134

    Article  ADS  Google Scholar 

  495. M. Karliner, S. Nussinov, and J. L. Rosner, \(QQ\overline Q \overline Q \) states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348

    Article  ADS  Google Scholar 

  496. N. Barnea, J. Vijande, and A. Valcarce, Four-quark spectroscopy within the hyper-spherical formalism, Phys. Rev. D 73, 054004 (2006), arXiv: hep-ph/ 0604010

    Article  ADS  Google Scholar 

  497. V. R. Debastiani and F. S. Navarra, A non-relativistic model for the \(\left[ {cc} \right]\left[ {\overline c \overline c } \right]\) tetraquark, Chin. Phys. C 43, 013105 (2019), arXiv: 1706.07553

    Article  ADS  Google Scholar 

  498. M.-S. Liu, Q.-F. Lü, X.-H. Zhong, and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019), arXiv: 1901.02564

    Article  ADS  MathSciNet  Google Scholar 

  499. W. Chen, et al., Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017), arXiv: 1605.01647

    Article  ADS  Google Scholar 

  500. G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fully-heavy tetraquark state \(QQ\overline Q \prime \overline Q \prime \), Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177

    Article  ADS  Google Scholar 

  501. M. A. Bedolla, J. Ferretti, C. D. Roberts, and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020), arXiv: 1911.00960

    Article  ADS  Google Scholar 

  502. R. J. Lloyd and J. P. Vary, All-charm tetraquarks, Phys. Rev. D 70, 014009 (2004), arXiv: hep-ph/ 0311179

    Article  ADS  Google Scholar 

  503. X. Chen, Fully-charm tetraquarks: \(cc\overline c \overline c \), arXiv: 2001.06755 (2020)

  504. Z.-G. Wang and Z.-Y. Di, Analysis of the vector and axialvector \(QQ\overline Q \overline Q \) tetraquark states with QCD sum rules, Acta Phys. Polon. B 50, 1335 (2019), arXiv: 1807.08520

    Article  ADS  MathSciNet  Google Scholar 

  505. M. N. Anwar, et al., Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540

    Article  ADS  Google Scholar 

  506. A. Esposito and A. D. Polosa, A \(bb\overline b \overline b \) di-bottomonium at the LHC? Eur. Phys. J. C 78, 782 (2018), arXiv: 1807.06040

    Article  ADS  Google Scholar 

  507. C. Becchi, A. Giachino, L. Maiani, and E. Santopinto, Search for \(bb\overline b \overline b \) tetraquark decays in 4 muons, B+B, \({B^0}{\overline B ^0}\) and \(B_s^0\overline B _s^0\) channels at LHC, Phys. Lett. B 806, 135495 (2020), arXiv: 2002.11077

    Article  Google Scholar 

  508. Y. Bai, S. Lu, and J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019), arXiv: 1612.00012

    Article  Google Scholar 

  509. J.-M. Richard, A. Valcarce, and J. Vijande, String dynamics and metastability of all-heavy tetraquarks, Phys. Rev. D 95, 054019 (2017), arXiv: 1703.00783

    Article  ADS  Google Scholar 

  510. Y. Chen and R. Vega-Morales, Golden probe of the di-ϒ threshold, arXiv: 1710.02738 (2017)

  511. X. Chen, Fully-heavy tetraquarks: \(bb\overline c \overline c \) and \(bc\overline b \overline c \), Phys. Rev. D 100, 094009 (2019), arXiv: 1908.08811

    Article  ADS  Google Scholar 

  512. A. V. Berezhnoy, A. K. Likhoded, and A. A. Novoselov, ϒ-meson pair production at the LHC, Phys. Rev. D 87, 054023 (2013), arXiv: 1210.5754

    Article  ADS  Google Scholar 

  513. CMS Collaboration, Observation of new structures in the J/ψJ/ψ mass spectrum in pp collisions at \(\sqrt s = 13\,{\rm{TeV}}\)

  514. ATLAS Collaboration, Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector

  515. K.-T. Chao and S.-L. Zhu, The possible tetraquark states \(cc\overline c \overline c \) observed by the LHCb experiment, Sci. Bull. 65, 1952 (2020), arXiv: 2008.07670

    Article  Google Scholar 

  516. X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103, 034001 (2021), arXiv: 2010.05163

    Article  ADS  Google Scholar 

  517. H.-T. An, K. Chen, and X. Liu, Exotic pentaquark states and chromomagnetic interaction, arXiv: 2010.05014 (2020)

  518. Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of fully heavy tetraquarks \(QQ\overline Q \overline Q \) in an extended relativized quark model, Eur. Phys. J. C 80, 871 (2020), arXiv: 2006.14445

    Article  ADS  Google Scholar 

  519. N. Lee, Z.-G. Luo, X.-L. Chen, and S.-L. Zhu, Possible deuteronlike molecular states composed of heavy baryons, Phys. Rev. D 84, 014031 (2011), arXiv: 1104.4257

    Article  ADS  Google Scholar 

  520. X. Jin, Y. Xue, H. Huang, and J. Ping, Full-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80, 1083 (2020), arXiv: 2006.13745

    Article  ADS  Google Scholar 

  521. J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Heavy baryon-antibaryon molecules in effective field theory, Phys. Rev. D 99, 074026 (2019), arXiv: 1706.02588

    Article  ADS  Google Scholar 

  522. L. Meng, N. Li, and S.-L. Zhu, Deuteron-like states composed of two doubly charmed baryons, Phys. Rev. D 95, 114019 (2017), arXiv: 1704.01009

    Article  ADS  Google Scholar 

  523. Z.-G. Wang, Revisit the tetraquark candidates in the J/ψ J/ψ mass spectrum, Int. J. Mod. Phys. A 36, 2150014 (2021), arXiv: 2009.05371

    Article  ADS  MathSciNet  Google Scholar 

  524. L. Tang, B.-D. Wan, K. Maltman, and C.-F. Qiao, Doubly heavy tetraquarks in QCD sum rules, Phys. Rev. D 101, 094032 (2020), arXiv: 1911.10951

    Article  ADS  Google Scholar 

  525. B.-D. Wan and C.-F. Qiao, Gluonic tetracharm configuration of X(6900), Phys. Lett. B 817, 136339 (2021), arXiv: 2012.00454

    Article  Google Scholar 

  526. B.-C. Yang, L. Tang, and C.-F. Qiao, Scalar fully-heavy tetraquark states \(QQ\prime \overline Q \overline Q \prime \) in QCD sum rules, Eur. Phys. J. C 81, 324 (2021), arXiv: 2012.04463

    Article  ADS  Google Scholar 

  527. G. Li, X.-F. Wang, and Y. Xing, Fully heavy tetraquark \(bb\overline c \overline c \): Lifetimes and weak decays, Eur. Phys. J. C 79, 645 (2019), arXiv: 1902.05805

    Article  ADS  Google Scholar 

  528. M.-Z. Liu and L.-S. Geng, Is X(7200) the heavy anti-quark diquark symmetry partner of X(3872)? Eur. Phys. J. C 81, 179 (2021), arXiv: 2012.05096

    Article  ADS  Google Scholar 

  529. Z. Zhao, et al., Study of charmoniumlike and fully-charm tetraquark spectroscopy, Phys. Rev. D 103, 116027 (2021), arXiv: 2012.15554

    Article  ADS  Google Scholar 

  530. Y. Yan, et al., Fully heavy pentaquarks in quark models, arXiv: 2110.10853 (2021)

  531. F.-X. Liu, M.-S. Liu, X.-H. Zhong, and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, arXiv: 2110.09052 (2021)

  532. Q.-N. Wang, Z.-Y. Yang, and W. Chen, Exotic fully-heavy \(Q\overline Q Q\overline Q \) tetraquark states in \({8_{\left[ {Q\overline Q } \right]}} \otimes {8_{\left[ {Q\overline Q } \right]}}\) color configuration, arXiv: 2109.08091 (2021)

  533. Q. Li, C.-H. Chang, G.-L. Wang, and T. Wang, Mass spectra and wave functions of \({T_{QQ\bar Q\bar Q}}\) tetraquarks, Phys. Rev. D 104, 014018 (2021), arXiv: 2104.12372

    Article  ADS  Google Scholar 

  534. H.-W. Ke, X. Han, X.-H. Liu, and Y.-L. Shi, Tetraquark state X(6900) and the interaction between diquark and antidiquark, Eur. Phys. J. C 81, 427 (2021), arXiv: 2103.13140

    Article  ADS  Google Scholar 

  535. G. Huang, J. Zhao, and P. Zhuang, Pair structure of heavy tetraquark systems, Phys. Rev. D 103, 054014 (2021), arXiv: 2012.14845

    Article  ADS  Google Scholar 

  536. H.-T. An, K. Chen, Z.-W. Liu, and X. Liu, Fully heavy pentaquarks, Phys. Rev. D 103, 074006 (2021), arXiv: 2012.12459

    Article  ADS  Google Scholar 

  537. C. Gong, et al., Nature of X(6900) and its production mechanism at LHCb, arXiv: 2011.11374 (2020)

  538. J.-W. Zhu, et al., A possible interpretation for X(6900) observed in four-muon final state by LHCb — A light Higgs-like boson? arXiv: 2011.07799 (2020)

  539. J.-R. Zhang, Fully-heavy pentaquark states, Phys. Rev. D 103, 074016 (2021), arXiv: 2011.04594

    Article  ADS  MathSciNet  Google Scholar 

  540. Q.-F. Cao, H. Chen, H.-R. Qi, and H.-Q. Zheng, Some remarks on X(6900), Chin. Phys. C 45, 103102 (2021), arXiv: 2011.04347

    Article  ADS  Google Scholar 

  541. Z.-H. Guo and J. A. Oller, Insights into the inner structures of the fully charmed tetraquark state X(6900), Phys. Rev. D 103, 034024 (2021), arXiv: 2011.00978

    Article  ADS  Google Scholar 

  542. R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966, 115393 (2021), arXiv: 2010.09082

    Article  Google Scholar 

  543. J.-R. Zhang, 0+ fully-charmed tetraquark states, Phys. Rev. D 103, 014018 (2021), arXiv: 2010.07719

    Article  ADS  MathSciNet  Google Scholar 

  544. R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Masses of the \(QQ\overline Q \overline Q \) tetraquarks in the relativistic diquark-antidiquark picture, Phys. Rev. D 102, 114030 (2020), arXiv: 2009.13237

    Article  ADS  Google Scholar 

  545. F. Feng, et al., Fragmentation production of fully-charmed tetraquarks at LHC, arXiv: 2009.08450 (2020)

  546. Y.-Q. Ma and H.-F. Zhang, Exploring the di-J/ψ resonances around 6.9 GeV based on ab initio perturbative QCD, arXiv: 2009.08376 (2020)

  547. X.-K. Dong, et al., Coupled-channel interpretation of the LHCb double- J/ψ spectrum and hints of a new state near the J/ψJ/ψ threshold, Phys. Rev. Lett. 126, 132001 (2021), Erratum: Phys. Rev. Lett. 127, 119901 (2021), arXiv: 2009.07795

    Article  ADS  Google Scholar 

  548. M. Karliner and J. L. Rosner, Interpretation of structure in the di-J/ψ spectrum, Phys. Rev. D 102, 114039 (2020), arXiv: 2009.04429

    Article  ADS  Google Scholar 

  549. J.-Z. Wang, D.-Y. Chen, X. Liu, and T. Matsuki, Producing fully charm structures in the J/ψ-pair invariant mass spectrum, Phys. Rev. D 103, 071503 (2021), arXiv: 2008.07430

    Article  ADS  Google Scholar 

  550. G. Yang, J. Ping, L. He, and Q. Wang, Potential model prediction of fully-heavy tetraquarks \(QQ\overline Q \overline Q \,\left( {Q = c,b} \right)\), arXiv: 2006.13756 (2020)

  551. C. Deng, H. Chen, and J. Ping, Towards the understanding of fully-heavy tetraquark states from various models, Phys. Rev. D 103, 014001 (2021), arXiv: 2003.05154

    Article  ADS  Google Scholar 

  552. Z.-C. Yang, et al., Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon, Chin. Phys. C 36, 6 (2012), arXiv: 1105.2901

    Article  ADS  Google Scholar 

  553. R. Zhu and C.-F. Qiao, Pentaquark states in a diquark-triquark model, Phys. Lett. B 756, 259 (2016), arXiv: 1510.08693

    Article  ADS  Google Scholar 

  554. N. Li and S.-L. Zhu, Hadronic molecular states composed of heavy flavor baryons, Phys. Rev. D 86, 014020 (2012), arXiv: 1204.3364

    Article  ADS  Google Scholar 

  555. M.-Z. Liu, et al., D E and D E molecular states from one boson exchange, Phys. Rev. D 98, 014014 (2018), arXiv: 1805.08384

    Article  ADS  Google Scholar 

  556. LHCb Collaboration, R. Aaij, et al., Observation of J/ψp resonances consistent with pentaquark states in Λ b0 → J/ψpK decays, Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414

    Article  ADS  Google Scholar 

  557. LHCb Collaboration, R. Aaij, et al., Evidence for exotic hadron contributions to Λ→ J/ψpπ decays, Phys. Rev. Lett. 117, 082003 (2016), arXiv: 1606.06999

    Article  ADS  Google Scholar 

  558. LHCb Collaboration, R. Aaij, et al., Model-independent evidence for J/ψp contributions to Λ 0b → J/ψpK decays, Phys. Rev. Lett. 117, 082002 (2016), arXiv: 1604.05708

    Article  ADS  Google Scholar 

  559. LHCb Collaboration, R. Aaij, et al., Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett. 122, 222001 (2019), arXiv: 1904.03947

    Article  ADS  Google Scholar 

  560. LHCb Collaboration, R. Aaij, et al., Evidence for a new structure in the J/ψp and J/ψp systems in \(B_s^0 \to J/\psi p\overline p \) decays, Phys. Rev. Lett. 128, 062001 (2022), arXiv: 2108.04720

    Article  ADS  Google Scholar 

  561. B. Wang, L. Meng, and S.-L. Zhu, Spectrum of the strange hidden charm molecular pentaquarks in chiral effective field theory, Phys. Rev. D 101, 034018 (2020), arXiv: 1912.12592

    Article  ADS  Google Scholar 

  562. H.-X. Chen, et al., Looking for a hidden-charm pentaquark state with strangeness S = −1 from decay into J/ψKΛ, Phys. Rev. C 93, 065203 (2016), arXiv: 1510.01803

    Article  ADS  MathSciNet  Google Scholar 

  563. LHCb Collaboration, R. Aaij, et al., Evidence of a J/ψA structure and observation of excited Ξ states in the Ξ b J/ψΛK decay, Sci. Bull. 66, 1278 (2021), arXiv: 2012.10380

    Article  Google Scholar 

  564. LHCb Collaboration, R. Aaij, et al., Observation of a J/ψΛ resonance consistent with a strange pentaquark candidate in \({B^ - } \to J/\psi \Lambda \overline p \) decays, arXiv: 2210.10346 (submitted to Phys. Rev. Lett.)

  565. F.-L. Wang, R. Chen, Z.-W. Liu, and X. Liu, Probing new types of Pc states inspired by the interaction between S-wave charmed baryon and anti-charmed meson in a doublet, Phys. Rev. C 101, 025201 (2020), arXiv: 1905.03636

    Article  ADS  Google Scholar 

  566. M.-L. Du, et al., Interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett. 124, 072001 (2020), arXiv: 1910.11846

    Article  ADS  Google Scholar 

  567. L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Hidden charm pentaquark states and \({\Sigma _c}{\overline D ^{\left( * \right)}}\) interaction in chiral perturbation theory, Phys. Rev. D 100, 014031 (2019), arXiv: 1905.04113

    Article  ADS  Google Scholar 

  568. X.-Z. Weng, X.-L. Chen, W.-Z. Deng, and S.-L. Zhu, Hidden-charm pentaquarks and Pc states, Phys. Rev. D 100, 016014 (2019), arXiv: 1904.09891

    Article  ADS  Google Scholar 

  569. Y.-J. Xu, C.-Y. Cui, Y.-L. Liu, and M.-Q. Huang, Partial decay widths of Pc(4312) as a \(\Sigma c{\overline D ^{\left( * \right)}}\) molecular state, Phys. Rev. D 102, 034028 (2020), arXiv: 1907.05097

    Article  ADS  Google Scholar 

  570. U. Ozdem and K. Azizi, Magnetic dipole moment of Zb(10610) in light-cone QCD, Phys. Rev. D 97, 014010 (2018), arXiv: 1709.09714

    Article  ADS  Google Scholar 

  571. H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76, 624 (2016), arXiv: 1510.04648

    Article  ADS  Google Scholar 

  572. M.-L. Du, Z.-H. Guo, and J. A. Oller, Insights into the nature of the Pcs(4459), arXiv: 2109.14237 (2021)

  573. K. Chen, et al., Systematics of the heavy flavor hadronic molecules, Eur. Phys. J. C 82, 581 (2022), arXiv: 2109.13057

    Article  ADS  Google Scholar 

  574. X. Hu and J. Ping, Investigation of hidden-charm pentaquarks with strangeness S = −1, Eur. Phys. J. C 82, 118 (2022), arXiv: 2109.09972

    Article  ADS  Google Scholar 

  575. N. Yalikun, et al., Coupled channel effects of the \(\Sigma _c^{\left( * \right)}{\overline D ^{\left( * \right)}} - {\Lambda _c}\left( {2595} \right){D^*}\) system and molecular nature of the Pc pentaquark states from one-boson exchange model, Phys. Rev. D 104, 094039 (2021), arXiv: 2109.03504

    Article  ADS  Google Scholar 

  576. J.-X. Lu, M.-Z. Liu, R.-X. Shi, and L.-S. Geng, Understanding Pcs(4459) as a hadronic molecule in the Ξ b → J/ψΛK- decay, Phys. Rev. D 104, 034022 (2021), arXiv: 2104.10303

    Article  ADS  Google Scholar 

  577. M.-L. Du, et al., Revisiting the nature of the Pcpentaquarks, J. High Energy Phys. 08, 157 (2021), arXiv: 2102.07159

    Article  ADS  Google Scholar 

  578. J.-T. Zhu, L.-Q. Song, and J. He, Pcs(4459) and other possible molecular states from \(\Xi _c^{\left( * \right)}{\overline D ^{\left( * \right)}}\) and \(\Xi _c^\prime {\overline D ^{\left( * \right)}}\) interactions, Phys. Rev. D 103, 074007 (2021), arXiv: 2101.12441

    Article  ADS  Google Scholar 

  579. S. X. Nakamura, A. Hosaka, and Y. Yamaguchi, Pc(4312)+ and Pc(4337)+ as interfering \({\Sigma _c}\overline D \) and \({\Lambda _c}{\overline D ^*}\) (anomalous) threshold cusps, arXiv: 2109.15235 (2021)

  580. P.-P. Shi, F. Huang, and W.-L. Wang, Hidden charm pentaquark states in a diquark model, Eur. Phys. J. A 57, 237 (2021), arXiv: 2107.08680

    Article  ADS  Google Scholar 

  581. K. Phumphan, et al., Pc resonances in molecular picture, arXiv: 2105.03150 (2021)

  582. S. X. Nakamura, Pc(4312)+, Pc(4380)+, and Pc(4457)+ as double triangle cusps, Phys. Rev. D 103, 111503 (2021), arXiv: 2103.06817

    Article  ADS  Google Scholar 

  583. C. W. Xiao, J. J. Wu, and B. S. Zou, Molecular nature of Pcs(4459) and its heavy quark spin partners, Phys. Rev. D 103, 054016 (2021), arXiv: 2102.02607

    Article  ADS  Google Scholar 

  584. R. Chen, Can the newly reported Pcs(4459) be a strange hidden-charm \({\Xi _c}{\overline D ^*}\) molecular pentaquark? Phys. Rev. D 103 (2021) 054007, arXiv: 2011.07214

    Article  ADS  Google Scholar 

  585. Z.-G. Wang, Analysis of the Pcs(4459) as the hidden-charm pentaquark state with QCD sum rules, Int. J. Mod. Phys. A 36, 2150071 (2021), arXiv: 2011.05102

    Article  ADS  Google Scholar 

  586. F.-Z. Peng, et al., Peaks within peaks and the possible two-peak structure of the Pc(4457): The effective field theory perspective, Phys. Rev. D 103, 014023 (2021), arXiv: 2007.01198

    Article  ADS  Google Scholar 

  587. H. Xu, Q. Li, C.-H. Chang, and G.-L. Wang, Recently observed Pc as molecular states and possible mixture of Pc(4457), Phys. Rev. D 101, 054037 (2020), arXiv: 2001.02980

    Article  ADS  Google Scholar 

  588. A. Giachino, et al., Hidden-charm and bottom meson-baryon molecules coupled with five-quark states, Springer Proc. Phys. 238, 621 (2020)

    Article  Google Scholar 

  589. C.-Y. Chen, M. Chen, and Y.-X. Liu, Quantum numbers of the pentaquark states Pc via symmetry analysis, Commun. Theor. Phys. 72, 125202 (2020), arXiv: 1912.01931

    Article  ADS  Google Scholar 

  590. B. Wang, L. Meng, and S.-L. Zhu, Hidden-charm and hidden-bottom molecular pentaquarks in chiral effective field theory, J. High Energy Phys. 11, 108 (2019), arXiv: 1909.13054

    Article  ADS  Google Scholar 

  591. A. Pimikov, H.-J. Lee, and P. Zhang, Hidden-charm pentaquarks with color-octet sub-structure in QCD sum rules, Phys. Rev. D 101, 014002 (2020), arXiv: 1908.04459

    Article  ADS  Google Scholar 

  592. Z.-G. Wang and X. Wang, Analysis of the strong decays of the Pc(4312) as a pentaquark molecular state with QCD sum rules, Chin. Phys. C 44, 103102 (2020), arXiv: 1907.04582

    Article  ADS  Google Scholar 

  593. Y. Yamaguchi, et al., Pc pentaquarks with chiral tensor and quark dynamics, Phys. Rev. D 101, 091502 (2020), arXiv: 1907.04684

    Article  ADS  Google Scholar 

  594. J.-B. Cheng and Y.-R. Liu, Pc(4457)+, Pc(4440)+, and Pc(4312)+: Molecules or compact pentaquarks? Phys. Rev. D 100, 054002 (2019), arXiv: 1905.08605

    Article  ADS  Google Scholar 

  595. Z.-G. Wang, Analysis of the Pc(4312), Pc(4440), Pc(4457) and related hidden-charm pentaquark states with QCD sum rules, Int. J. Mod. Phys. A 35, 2050003 (2020), arXiv: 1905.02892

    Article  ADS  Google Scholar 

  596. JPAC Collaboration, C. Fernández-Ramírez, et al., Interpretation of the LHCb Pc(4312)+ signal, Phys. Rev. Lett. 123, 092001 (2019), arXiv: 1904.10021

    Article  Google Scholar 

  597. C.-J. Xiao, et al., Exploring the molecular scenario of Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 014022 (2019), arXiv: 1904.00872

    Article  ADS  Google Scholar 

  598. Z.-H. Guo and J. A. Oller, Anatomy of the newly observed hidden-charm pen-taquark states: Pc(4312), Pc(4440) and Pc(4457), Phys. Lett. B 793, 144 (2019), arXiv: 1904.00851

    Article  ADS  Google Scholar 

  599. J. He, Study of Pc(4457), Pc(4440), and Pc(4312) in a quasipotential Bethe-Salpeter equation approach, Eur. Phys. J. C 79, 393 (2019), arXiv: 1903.11872

    Article  ADS  Google Scholar 

  600. F.-K. Guo, H.-J. Jing, U.-G. Meißner, and S. Sakai, Isospin breaking decays as a diagnosis of the hadronic molecular structure of the Pc(4457), Phys. Rev. D 99, 091501 (2019), arXiv: 1903.11503

    Article  ADS  Google Scholar 

  601. H.-X. Chen, W. Chen, and S.-L. Zhu, Possible interpretations of the Pc(4312), Pc(4440), and Pc(4457), Phys. Rev. D 100, 051501 (2019), arXiv: 1903.11001

    Article  ADS  Google Scholar 

  602. X. Liu, H. Huang, and J. Ping, Hidden strange pentaquark states in constituent quark models, Phys. Rev. C 98, 055203 (2018), arXiv: 1807.03195.

    Article  ADS  Google Scholar 

  603. J. Ferretti, E. Santopinto, M. Naeem Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states, Phys. Lett. B 789, 562 (2019), arXiv: 1807.01207

    Article  ADS  Google Scholar 

  604. E. Hiyama, A. Hosaka, M. Oka, and J.-M. Richard, Quark model estimate of hidden-charm pentaquark resonances, Phys. Rev. C 98, 045208 (2018), arXiv: 1803.11369

    Article  ADS  Google Scholar 

  605. S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons, Phys. Rev. D 97, 114017 (2018), arXiv: 1801.09697

    Article  ADS  Google Scholar 

  606. J.-M. Richard, A. Valcarce, and J. Vijande, Stable heavy pentaquarks in constituent models, Phys. Lett. B 774, 710 (2017), arXiv: 1710.08239. 100

    Article  ADS  Google Scholar 

  607. J. He, Understanding spin parity of Pc(4450) and Y (4274) in a hadronic molecular state picture, Phys. Rev. D 95, 074004 (2017), arXiv: 1607.03223

    Article  ADS  Google Scholar 

  608. M. I. Eides, V. Y. Petrov, and M. V. Polyakov, Pentaquarks with hidden charm as hadroquarkonia, Eur. Phys. J. C 78, 36 (2018), arXiv: 1709.09523

    Article  ADS  Google Scholar 

  609. Y. Yamaguchi, et al., Hidden-charm and bottom meson-baryon molecules coupled with five-quark states, Phys. Rev. D 96, 114031 (2017), arXiv: 1709.00819

    Article  ADS  Google Scholar 

  610. Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys. 94, 282 (2017)

    Article  ADS  Google Scholar 

  611. Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D 95, 114017 (2017), arXiv: 1703.01045

    Article  ADS  Google Scholar 

  612. R. Chen, J. He, and X. Liu, Possible strange hidden-charm pentaquarks from \(\Sigma _c^{\left( * \right)}\overline D _s^*\) and \(\Xi _c^{\left( {\prime ,*} \right)}{D^*}\) interactions, Chin. Phys. C 41, 103105 (2017), arXiv: 1609.03235

    Article  ADS  Google Scholar 

  613. F.-K. Guo, U. G. Meißner, J. Nieves, and Z. Yang, Remarks on the Pc structures and triangle singularities, Eur. Phys. J. A 52, 318 (2016), arXiv: 1605.05113

    Article  ADS  Google Scholar 

  614. E. Santopinto and A. Giachino, Compact pentaquark structures, Phys. Rev. D 96, 014014 (2017), arXiv: 1604.03769

    Article  ADS  Google Scholar 

  615. C.-W. Shen, F.-K. Guo, J.-J. Xie, and B.-S. Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672

    Article  ADS  Google Scholar 

  616. Y. Shimizu, D. Suenaga, and M. Harada, Coupled channel analysis of molecule picture of Pc(4380), Phys. Rev. D 93, 114003 (2016), arXiv: 1603.02376

    Article  ADS  Google Scholar 

  617. Q.-F. Lü and Y.-B. Dong, Strong decay mode J/ψp of hidden charm pentaquark states Pc (4380) and Pc/+(4450) in Σ *c molecular scenario, Phys. Rev. D 93, 074020 (2016), arXiv: 1603.00559

    Article  ADS  Google Scholar 

  618. E. Oset, et al., Weak decays of heavy hadrons into dynamically generated resonances, Int. J. Mod. Phys. E 25, 1630001 (2016), arXiv: 1601.03972

    Article  ADS  Google Scholar 

  619. R. Chen, X. Liu, and S.-L. Zhu, Hidden-charm molecular pentaquarks and their charm-strange partners, Nucl. Phys. A 954, 406 (2016), arXiv: 1601.03233

    Article  ADS  Google Scholar 

  620. Z.-G. Wang, Analysis of the \({{3 \over 2}^ \pm }\) pentaquark states in the diquark-diquark-antiquark model with QCD sum rules, Nucl. Phys. S 913, 163 (2016), arXiv: 1512.04763

    Article  ADS  Google Scholar 

  621. G. Yang and J. Ping, Structure of pentaquarks Pc in the chiral quark model, Phys. Rev. D 95, 014010 (2017), arXiv: 1511.09053

    Article  ADS  Google Scholar 

  622. T. J. Burns, Phenomenology of Pc(4380)+, Pc(4450)+ and related states, Eur. Phys. J. A 51, 152(2015), arXiv: 1509.02460

    Article  ADS  Google Scholar 

  623. N. N. Scoccola, D. O. Riska, and M. Rho, Pentaquark candidates P +0 (4380) and P +0 (4450) within the soliton picture of baryons, Phys. Rev. D 92, 051501 (2015), arXiv: 1508.01172

    Article  ADS  Google Scholar 

  624. Z.-G. Wang, Analysis of Pc(4380) and Pc(4450) as pentaquark states in the diquark model with QCD sum rules, Eur. Phys. J. C 76, 70 (2016), arXiv: 1508.01468

    Article  ADS  Google Scholar 

  625. R. Ghosh, A. Bhattacharya, and B. Chakrabarti, A study on Pc*(4380) and Pc*(4450) mass in the quasi particle diquark model, Phys. Part. Nucl. Lett. 14, 550 (2017), arXiv: 1508.00356

    Article  Google Scholar 

  626. G.-N. Li, X.-G. He, and M. He, Some predictions of diquark model for hidden charm pentaquark discovered at the LHCb, J. High Energy Phys. 12, 128 (2015), arXiv: 1507.08252

    ADS  Google Scholar 

  627. V. V. Anisovich, et al., Pentaquarks and resonances in the pJ/ψ spectrum, arXiv: 1507.07652 (2015)

  628. M. Mikhasenko, A triangle singularity and the LHCb pentaquarks, arXiv: 1507.06552 (2015)

  629. R. F. Lebed, The pentaquark candidates in the dynamical diquark picture, Phys. Lett. B 749, 454 (2015), arXiv: 1507.05867

    Article  ADS  Google Scholar 

  630. X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B 757, 231 (2016), arXiv: 1507.05359

    Article  ADS  Google Scholar 

  631. J. He, \(D\Sigma _c^*\) and \({\overline D ^*}{\Sigma _c}\) interactions and the LHCb hidden-charmed pentaquarks, Phys. Lett. B 753, 547 (2016), arXiv: 1507.05200

    Article  ADS  Google Scholar 

  632. L. Maiani, A. D. Polosa, and V. Riquer, The new pentaquarks in the diquark model, Phys. Lett. B 749, 289 (2015), arXiv: 1507.04980

    Article  ADS  Google Scholar 

  633. F.-K. Guo, U.-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92, 071502 (2015), arXiv: 1507.04950

    Article  ADS  Google Scholar 

  634. A. Mironov and A. Morozov, Is the pentaquark doublet a hadronic molecule? JETP Lett. 102, 271 (2015), arXiv: 1507.04694

    Article  ADS  Google Scholar 

  635. L. Roca, J. Nieves, and E. Oset, LHCb pentaquark as a \({\overline D ^*}{\Sigma _c} - {\overline D ^*}\Sigma _c^*\) molecular state, Phys. Rev. D 92, 094003 (2015), arXiv: 1507.04249

    Article  ADS  Google Scholar 

  636. H.-X. Chen, et al., Towards exotic hidden-charm pentaquarks in QCD, Phys. Rev. Lett. 115, 172001 (2015), arXiv: 1507.03717

    Article  ADS  Google Scholar 

  637. R. Chen, X. Liu, X.-Q. Li, and S.-L. Zhu, Identifying exotic hidden-charm pentaquarks, Phys. Rev. Lett. 115 (2015) 132002, arXiv: 1507.03704

    Article  ADS  Google Scholar 

  638. M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly heavy hadronic molecules, Phys. Rev. Lett. 115, 122001 (2015), arXiv: 1506.06386

    Article  ADS  Google Scholar 

  639. X.-K. Dong, F.-K. Guo, and B.-S. Zou, Explaining the many threshold structures in the heavy-quark hadron spectrum, Phys. Rev. Lett. 126, 152001 (2021), arXiv: 2011.14517

    Article  ADS  Google Scholar 

  640. TWQCD Collaboration, T.-W. Chiu and T.-H. Hsieh, X(3872) in lattice QCD with exact chiral symmetry, Phys. Lett. B 646, 95 (2007), arXiv: hep-ph/0603207

    Article  ADS  Google Scholar 

  641. F.-K. Guo, L. Liu, U.-G. Meissner, and P. Wang, Tetraquarks, hadronic molecules, meson-meson scattering and disconnected contributions in lattice QCD, Phys. Rev. D 88, 074506 (2013), arXiv: 1308.2545

    Article  ADS  Google Scholar 

  642. Y. Bi, et al., Diquark mass differences from unquenched lattice QCD, Chin. Phys. C 40, 073106(2016), arXiv: 1510.07354

    Article  ADS  Google Scholar 

  643. C. Liu, Review on hadron spectroscopy, PoS LATTICE2016, 006(2017), arXiv: 1612.00103

  644. L. Leskovec, S. Prelovsek, C. B. Lang, and D. Mohler, Study of the z +c channel in lattice QCD, PoS LATTICE 2014, 118 (2015), arXiv: 1410.8828

    Google Scholar 

  645. Hadron Spectrum Collaboration, L. Gayer, et al., Isospin-1/2 scattering and the lightest D0* resonance from lattice QCD, J. High Energy Phys. 07, 123 (2021), arXiv: 2102.04973

    ADS  Google Scholar 

  646. Hadron Spectrum Collaboration, G. K. C. Cheung, et al., \(DK\,I = 0,\,D\overline K I = 0\), 1 scattering and the Ds0*(2317) from lattice QCD, J. High Energy Phys. 02, 100 (2021), arXiv: 2008.06432

    ADS  Google Scholar 

  647. S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2, 1285 (1970)

    Article  ADS  Google Scholar 

  648. A. J. Buras and M. Munz, Effective Hamiltonian for B → Xse+e beyond leading logarithms in the naive dimensional regularization and’ t Hooft-Veltman schemes, Phys. Rev. D 52, 186 (1995), arXiv: hep-ph/ 9501281

    Article  ADS  Google Scholar 

  649. A. J. Buras, Weak Hamiltonian, CP violation and rare decays, in Les Houches summer school in theoretical physics, session 68: Probing the standard model of particle interactions, 1998, arXiv: hep-ph/9806471

  650. G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), arXiv: hep-ph/9512380

    Article  ADS  Google Scholar 

  651. W. Altmannshofer, et al., Symmetries and asymmetries of B → K*μ+μ decays in the standard model and beyond, J. High Energy Phys. 01, 019 (2009), arXiv: 0811.1214.

    Article  ADS  Google Scholar 

  652. F. Kruger and J. Matias, Probing new physics via the transverse amplitudes of B0 → K*0(→ Kπ+)l+l at large recoil, Phys. Rev. D 71 (2005) 094009, arXiv: hep-ph/0502060

    Article  ADS  Google Scholar 

  653. S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon, Exploring new physics in the \({C_7} - C_7^\prime \) plane, J. High Energy Phys. 06, 099 (2011), arXiv: 1104.3342

    Article  ADS  Google Scholar 

  654. E. Lunghi and J. Matias, Huge right-handed current effects in B → K*(Kπ)ℓ+ in supersymmetry, J. High Energy Phys. 04, 058 (2007), arXiv: hep-ph/0612166

    Article  ADS  Google Scholar 

  655. M. Beneke, C. Bobeth, and R. Szafron, Power-enhanced leading-logarithmic QED corrections to Bq → μ+μ, J. High Energy Phys. 10, 232 (2019), arXiv: 1908.07011

    Article  ADS  Google Scholar 

  656. CMS and LHCb Collaborations, V. Khachatryan, et al., Observation of the rare Bq → μ+μ decay from the combined analysis of CMS and LHCb data, Nature 522, 68 (2015), arXiv: 1411.4413

    Article  ADS  Google Scholar 

  657. LHCb Collaboration, R. Aaij, et al., Measurement of the B 0s → μ+μ branching fraction and effective lifetime and search for B0 → μ+μ decays, Phys. Rev. Lett. 118 (2017) 191801, arXiv: 1703.05747

    Article  ADS  Google Scholar 

  658. CMS Collaboration, A. M. Sirunyan, et al., Measurement of properties of B 0s → μ+μ decays and search for B0 → μ+μ with the CMS experiment, J. High Energy Phys. 04, 188 (2020), arXiv: 1910.12127

    ADS  Google Scholar 

  659. ATLAS Collaboration, M. Aaboud et al., Study of the rare decays of B 0s and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, J. High Energy Phys. 04, 098 (2019), arXiv: 1812.03017

    Article  ADS  Google Scholar 

  660. LHCb Collaboration, Combination of the ATLAS, CMS and LHCb results on the B(s)0 → μ+μ decays, LHCb-CONF-2020-002, 2020, ATLAS-CONF-2020-049, CMS PAS BPH-20-003, LHCb-CONF-2020-002

  661. LHCb Collaboration, R. Aaij, et al., Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128, 041801 (2022), arXiv: 2108.09284

    Article  ADS  Google Scholar 

  662. LHCb Collaboration, R. Aaij, et al., Measurement of the B 0s → μ+μ decay properties and search for the B 0s → μ+μ and B 0s → μ+μγ decays, Phys. Rev. D105, 012010 (2022), arXiv: 2108.09283

    ADS  Google Scholar 

  663. K. De Bruyn et al., Probing new physics via the B 0s → μ+μ effective lifetime, Phys. Rev. Lett. 109, 041801 (2012), arXiv: 1204.1737

    Article  ADS  Google Scholar 

  664. LHCb Collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv: 1808.08865

  665. LHCb Collaboration, R. Aaij, et al., Search for the rare decays B 0s → e+e and B 0s → e+e, Phys. Rev. Lett. 124, 211802 (2020), arXiv: 2003.03999

    Article  ADS  Google Scholar 

  666. LHCb Collaboration, R. Aaij et al., Search for rare B(s)0 → μ+μμ+μ decays, J. High Energy Phys. 03, 109 (2022), arXiv: 2111.11339

    ADS  Google Scholar 

  667. A. Bharucha, D. M. Straub, and R. Zwicky, B → Vℓ+ in the standard model from light-cone sum rules, J. High Energy Phys. 08, 098 (2016), arXiv: 1503.05534

    Article  ADS  Google Scholar 

  668. A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y.-M. Wang, Charm-loop effect in B → Vℓ+ and B → K(*)+, J. High Energy Phys. 09, 089 (2010), arXiv: 1006.4945

    Article  ADS  Google Scholar 

  669. J. Gao, et al., Precision calculations of B → V form factors from soft-collinear effective theory sum rules on the light-cone, Phys. Rev. D 101, 074035 (2020), arXiv: 1907.11092

    Article  ADS  Google Scholar 

  670. R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Lattice QCD calculation of form factors describing the rare decays B → K*ℓ+ and B → ϕℓ+ Phys. Rev. D 89, 094501 (2014), arXiv: 1310.3722

    Article  ADS  Google Scholar 

  671. R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, Rare B decays using lattice QCD form factors, PoS Lattice 2014, 372 (2015), arXiv: 1501.00367

    Google Scholar 

  672. LHCb Collaboration, R. Aaij, et al., Angular analysis and differential branching fraction of the decay B 0s → ϕμ+μ, J. High Energy Phys. 09, 179 (2015), arXiv: 1506.08777

    Google Scholar 

  673. LHCb Collaboration, R. Aaij, et al., Branching fraction measurements of the rare B 0s → ϕμ+μ and B 0s → f2’ (1525)μ+μ decays, Phys. Rev. Lett. 127, 151801 (2021), arXiv: 2105.14007

    Article  ADS  Google Scholar 

  674. LHCb Collaboration, R. Aaij, et al., Differential branching fraction and angular analysis of Λ 0s → ϕμ+μ decays, J. High Energy Phys. 06, 115 (2015), Erratum JHEP 09, 145 (2018), arXiv: 1503.07138

    Article  Google Scholar 

  675. LHCb Collaboration, R. Aaij, et al., Measurements of the S-wave fraction in B0K+πμ+μ decays and the B0 →K*(892)0μ+μ differential branching fraction, J. High Energy Phys. 11, 047 (2016), Erratum: J. High Energy Phys. 04, 142 (2017), arXiv: 1606.04731

    Google Scholar 

  676. LHCb Collaboration, R. Aaij, et al., Differential branching fractions and isospin asymmetries of B → K(*)μ+μ decays, J. High Energy Phys. 06, 133 (2014), arXiv: 1403.8044

    Google Scholar 

  677. W. Altmannshofer and D. M. Straub, New physics in b → s transitions after LHC Run 1, Eur. Phys. J. C 75, 382 (2015), arXiv: 1411.3161

    Article  ADS  Google Scholar 

  678. W. Altmannshofer and D. M. Straub, Implications of b → s measurements, in 50th Rencontres de Moriond on EW Interactions and Unified Theories, 333–338, 2015, arXiv: 1503.06199

  679. W. Detmold, C.-J. D. Lin, S. Meinel, and M. Wingate, Λ 0b → Λℓ+ form factors and differential branching fraction from lattice QCD, Phys. Rev. D 87, 074502 (2013), arXiv: 1212.4827

    Article  ADS  Google Scholar 

  680. C. Bobeth, G. Hiller, and D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP violation, J. High Energy Phys. 07, 067 (2011), arXiv: 1105.0376

    Article  ADS  Google Scholar 

  681. C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, The decay B → ℓ+ at low hadronic recoil and model-independent ΔB = 1 constraints, J. High Energy Phys. 01, 107 (2012), arXiv: 1111.2558

    Article  ADS  Google Scholar 

  682. BaBar Collaboration, B. Aubert, et al., Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B → Kℓ+ and B → Kℓ+, Phys. Rev. D 73, 092001 (2006), arXiv: hep-ex/0604007

    Article  ADS  Google Scholar 

  683. Belle Collaboration, S. Wehle, et al., Lepton-flavor-dependent angular analysis of B → Kℓ+, Phys. Rev. Lett. 118, 111801 (2017), arXiv: 1612.05014

    Article  ADS  Google Scholar 

  684. ATLAS Collaboration, M. Aaboud, et al., Angular analysis of B 0d → K*μ+μ decays in pp collisions at \(\sqrt s = 8\,{\rm{Tev}}\) with the ATLAS detector, J. High Energy Phys. 10 (2018) 047, arXiv: 1805.04000

    Article  ADS  Google Scholar 

  685. CMS Collaboration, A. M. Sirunyan, et al., Measurement of angular parameters from the decay B0 → K*0μ+μ in proton-proton collisions at \(\sqrt s = 8\,{\rm{Tev}}\), Phys. Lett. B 781, 517 (2018), arXiv: 1710.02846

    Article  ADS  Google Scholar 

  686. LHCb Collaboration, R. Aaij, et al., Differential branching fraction and angular analysis of the decay B0 → μ+μ, Phys. Rev. Lett. 108, 181806 (2012), arXiv: 1112.3515

    Article  Google Scholar 

  687. LHCb Collaboration, R. Aaij, et al., Differential branching fraction and angular analysis of the decay B0 → K*0μ+μ, JHEP 08, 131 (2013), arXiv: 1304.6325

    Article  Google Scholar 

  688. LHCb Collaboration, R. Aaij, et al., Angular analysis of the B0 → K*0μ+μ decay using 3 fb−1 of integrated luminosity, J. High Energy Phys. 02, 104 (2016), arXiv: 1512.04442

    Google Scholar 

  689. LHCb Collaboration, R. Aaij, et al., Measurement of CP-averaged observables in the B0 → K*0μ+μ decay, Phys. Rev. Lett. 125, 011802 (2020), arXiv: 2003.04831

    Article  ADS  Google Scholar 

  690. S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, On the impact of power corrections in the prediction of B → K*μ+μ observables, J. High Energy Phys. 12, 125 (2014), arXiv: 1407.8526

    Article  ADS  Google Scholar 

  691. D. M. Straub, flavio: A Python package for flavour and precision phenomenology in the standard model and beyond, arXiv: 1810.08132

  692. LHCb Collaboration, R. Aaij et al., Angular analysis of the B+ → K*μ+μ decay, Phys. Rev. Lett. 126, 161802 (2021), arXiv: 2012.13241

    Article  ADS  Google Scholar 

  693. LHCb Collaboration, R. Aaij, et al., Angular analysis of the rare decay B 0s → ϕμ+μ, J. High Energy Phys. 11, 043 (2021), arXiv: 2107.13428

    Article  ADS  Google Scholar 

  694. C. Bobeth, G. Hiller, and G. Piranishvili, CP asymmetries in \(\overline B \to {\overline K ^*}{\left( { \to \overline K \pi } \right)^{\overline \ell }}\ell \) and untagged \({\overline B _s},\;{\overline B _s} \to \phi {\left( { \to {K^ + }{K^ - }} \right)^{\overline \ell }}\ell \) decays at NLO, J. High Energy Phys. 07, 106 (2008), arXiv: 0805.2525

    Article  ADS  Google Scholar 

  695. S. Descotes-Genon and J. Virto, Time dependence in B → Vℓℓ decays, J. High Energy Phys. 04, 045 (2015), Erratum: J. High Energy Phys. 07, 049 (2015), arXiv: 1502.05509

    Article  ADS  Google Scholar 

  696. LHCb Collaboration, R. Aaij, et al., Angular analysis of charged and neutral B → Kμ+μ decays, J. High Energy Phys. 05, 082 (2014), arXiv: 1403.8045

    Google Scholar 

  697. CMS Collaboration, A. M. Sirunyan et al., Angular analysis of the decay B+ → K+μ+μ in proton-proton collisions at \(\sqrt s = 8\), Phys. Rev. D 98, 112011 (2018), arXiv: 1806.00636

    Article  ADS  Google Scholar 

  698. LHCb Collaboration, R. Aaij, et al., Angular moments of the decay Λ 0b → Λμ+μ at low hadronic recoil, J. High Energy Phys. 09, 146 (2018), arXiv: 1808.00264

    Article  Google Scholar 

  699. G. Hiller and F. Kruger, More model-independent analysis of b → s processes, Phys. Rev. D 69, 074020 (2004), arXiv: hep-ph/0310219

    Article  ADS  Google Scholar 

  700. M. Bordone, G. Isidori, and A. Pattori, On the standard model predictions for RK and RK*, Eur. Phys. J. C 76, 440 (2016), arXiv: 1605.07633

    Article  ADS  Google Scholar 

  701. G. Isidori, S. Nabeebaccus, and R. Zwicky, QED corrections in \(\overline B \to \overline K {\ell ^ + }{\ell ^ - }\) at the double-differential level, J. High Energy Phys. 12, 104 (2020), arXiv: 2009.00929

    Article  ADS  MathSciNet  Google Scholar 

  702. LHCb Collaboration, R. Aaij et al., Search for lepton-universality violation in B+ →>K++ decays, Phys. Rev. Lett. 122, 191801 (2019), arXiv: 1903.09252

    Article  ADS  Google Scholar 

  703. LHCb Collaboration, R. Aaij, et al., Test of lepton universality in beauty-quark decays, Nat. Phys. 18, 277 (2022), arXiv: 2103.11769

    Article  Google Scholar 

  704. S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, Global analysis of b → sℓℓ anomalies, J. High Energy Phys. 06, 092 (2016), arXiv: 1510.04239

    Article  ADS  Google Scholar 

  705. C. Bobeth, G. Hiller, and G. Piranishvili, Angular distributions of \(\overline B \to \overline K \overline \ell \overline \ell \) decays, J. High Energy Phys. 12, 040 (2007), arXiv: 0709.4174

    Article  ADS  Google Scholar 

  706. D. van Dyk, F. Beaujean, and C. Bobeth, Eos (“delta456” release), 2016, Zenodo, doi: https://doi.org/10.5281/zenodo.159680

  707. BaBar Collaboration, J. P. Lees, et al., Measurement of branching fractions and rate asymmetries in the rare decays B → K(*)+, Phys. Rev. D 86, 032012 (2012), arXiv: 1204.3933

    Article  ADS  Google Scholar 

  708. Belle Collaboration, J.-T. Wei, et al., Measurement of the differential branching fraction and forward-backward asymmetry for B → K(*)+, Phys. Rev. Lett. 103, 171801 (2009), arXiv: 0904.0770

    Article  Google Scholar 

  709. LHCb Collaboration, R. Aaij, et al., Test of lepton universality with B → K*0+ decays, J. High Energy Phys. 08, 055(2017), arXiv: 1705.05802

    Google Scholar 

  710. B. Capdevila, S. Descotes-Genon, J. Matias, and J. Virto, Assessing lepton-flavour non-universality from B → K*+ angular analyses, J. High Energy Phys. 10, 075 (2016), arXiv: 1605.03156

    Article  ADS  Google Scholar 

  711. B. Capdevila, S. Descotes-Genon, L. Hofer, and J. Matias, Hadronic uncertainties in B → K*+: A state-of-the-art analysis, J. High Energy Phys. 04, 016 (2017), arXiv: 1701.08672

    Article  ADS  Google Scholar 

  712. N. Serra, R. Silva Coutinho, and D. van Dyk, Measuring the breaking of lepton flavor universality in B → K*+, Phys. Rev. D 95, 035029 (2017), arXiv: 1610.08761

    Article  ADS  Google Scholar 

  713. S. Jäger and J. M. Camalich, Reassessing the discovery potential of the B → K*+ decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93, 014028 (2016), arXiv: 1412.3183

    Article  ADS  Google Scholar 

  714. HCb Collaboration, R. Aaij, et al., Test of lepton universality using Λ 0b → pK*−+ decays, J. High Energy Phys. 05, 040 (2020), arXiv: 1912.08139

    Google Scholar 

  715. HCb Collaboration, R. Aaij, et al., Tests of lepton universality using B0K 0s + and B+K*++ decays, Phys. Rev. Lett. 128, 191802 (2022), arXiv: 2110.09501

    Article  ADS  Google Scholar 

  716. M. Algueró, et al., Emerging patterns of new physics with and without lepton flavour universal contributions, Eur. Phys. J. C 79, 714 (2019), Addendum Eur. Phys. J. C 80, 511(2020), arXiv: 1903.09578

    Article  ADS  Google Scholar 

  717. M. Ciuchini, et al., Lessons from the B0,+ → K*0,+ μ+μ angular analyses, Phys. Rev. D 103, 015030 (2021), arXiv: 2011.01212

    Article  ADS  Google Scholar 

  718. J. Aebischer, et al., B-decay discrepancies after Moriond 2019, Eur. Phys. J. C 80, 252 (2020), arXiv: 1903.10434

    Article  ADS  Google Scholar 

  719. M. Algueró, et al., b → sℓℓ global fits after Moriond 2021 results, in: 55th Rencontres de Moriond on QCD and High Energy Interactions, 2021, arXiv: 2104.08921

  720. W. Altmannshofer and P. Stangl, New physics in rare B decays after Moriond 2021, Eur. Phys. J. C 81, 952 (2021), arXiv: 2103.13370

    Article  ADS  Google Scholar 

  721. L.-S. Geng, et al., Implications of new evidence for lepton-universality violation in b → sℓ+ decays, Phys. Rev. D 104, 035029 (2021), arXiv: 2103.12738

    Article  ADS  Google Scholar 

  722. C. Cornella, et al., Reading the footprints of the B-meson flavor anomalies, J. High Energy Phys. 08, 050 (2021), arXiv: 2103.16558

    Article  ADS  Google Scholar 

  723. G. Isidori, D. Lancierini, P. Owen, and N. Serra, On the significance of new physics in b → sℓ+ decays, Phys. Lett. B 822, 136644 (2021), arXiv: 2104.05631

    Article  Google Scholar 

  724. G. Isidori, et al., A general effective field theory description of b → sℓ+ lepton universality ratios, Phys. Lett. S 830, 137151 (2022), arXiv: 2110.09882

    Article  Google Scholar 

  725. T. Hurth, F. Mahmoudi, D. M. Santos, and S. Neshatpour, More indications for lepton nonuniversality in b → sℓ+, Phys. Lett. B 824, 136838 (2022), arXiv: 2104.10058

    Article  Google Scholar 

  726. S. Descotes-Genon, M. Novoa-Brunet, and K. K. Vos, The time-dependent angular analysis of Bd → Ksℓℓ, a new benchmark for new physics, J. High Energy Phys. 02, 129 (2021), arXiv: 2008.08000

    Article  ADS  Google Scholar 

  727. N. Košnik and A. Smolkovič, LFU and CP violation with S3, arXiv: 2108.11929

  728. M. Bordone, C. Cornella, G. Isidori, and M. König, The LFU ratio Rπ in the standard model and beyond, Eur. Phys. J. C 81, 850 (2021), arXiv: 2101.11626

    Article  ADS  Google Scholar 

  729. A. V. Rusov, Probing new physics in b → d transitions, J. High Energy Phys. 07 (2020) 158, arXiv: 1911.12819

    Article  ADS  Google Scholar 

  730. N. R. Soni, et al., Rare b → d decays in covariant confined quark model, arXiv: 2008.07202 (2020)

  731. B. Kindra and N. Mahajan, Predictions of angular observables for \({\overline B _s} \to {K^*}\ell \ell \) and \(\overline B \to \rho \ell \ell \) in the standard model, Phys. Rev. D 98, 094012 (2018), arXiv: 1803.05876

    Article  ADS  Google Scholar 

  732. D. Atwood, M. Gronau, and A. Soni, Mixing induced CP asymmetries in radiative B decays in and beyond the standard model, Phys. Rev. Lett. 79, 185 (1997), arXiv: hep-ph/9704272

    Article  ADS  Google Scholar 

  733. L. L. Everett, et al., Alternative approach to b → sγ in the uMSSM, J. High Energy Phys. 01, 022 (2002), arXiv: hep-ph/0112126

    Article  ADS  Google Scholar 

  734. B. Grinstein, Y. Grossman, Z. Ligeti, and D. Pirjol, Photon polarization in B → Xγ in the standard model, Phys. Rev. D 71, 011504 (2005), arXiv: hep-ph/0412019

    Article  ADS  Google Scholar 

  735. D. Becirevic, E. Kou, A. Le Yaouanc, and A. Tayduganov, Future prospects for the determination of the Wilson coefficient \({C_{{7_\gamma }}}^\prime \), J. High Energy Phys. 08, 090 (2012), arXiv: 1206.1502

    Article  ADS  Google Scholar 

  736. E. Kou, C.-D. Lü, and F.-S. Yu, Photon polarization in the b → sγ processes in the left-right symmetric model, J. High Energy Phys. 12, 102 (2013), arXiv: 1305.3173

    ADS  Google Scholar 

  737. N. Haba, et al., Search for new physics via photon polarization of b → sγ, J. High Energy Phys. 03, 160 (2015), arXiv: 1501.00668

    Article  Google Scholar 

  738. A. Paul and D. M. Straub, Constraints on new physics from radiative B decays, J. High Energy Phys. 04, 027 (2017), arXiv: 1608.02556

    Article  ADS  Google Scholar 

  739. D. Atwood, T. Gershon, M. Hazumi, and A. Soni, Mixing-induced CP violation in B → P1P2γ in search of clean new physics signals, Phys. Rev. D 71, 076003 (2005), arXiv: hep-ph/0410036

    Article  ADS  Google Scholar 

  740. F. Muheim, Y. Xie, and R. Zwicky, Exploiting the width difference in Bs> ϕγ, Phys. Lett. B 664, 174 (2008), arXiv: 0802.0876

    Article  ADS  Google Scholar 

  741. BaBar Collaboration, J. P. Lees, et al., Precision measurement of the B → Xsγ photon energy spectrum, branching fraction, and direct CP asymmetry ACP(B → Xs+jγ), Phys. Rev. Lett. 109, 191801 (2012), arXiv: 1207.2690

    Article  ADS  Google Scholar 

  742. Belle Collaboration, T. Horiguchi, et al., Evidence for isospin violation and measurement of CP asymmetries in BK*(892) γ, Phys. Rev. Lett. 119, 191802 (2017), arXiv: 1707.00394

    Article  ADS  Google Scholar 

  743. LHCb Collaboration, R. Aaij, et al., Measurement of the ratio of branching fractions \({\cal B}\left( {{B^0} \to {K^{*0}}\gamma } \right)/{\cal B}\left( {B_s^0 \to \phi \gamma } \right)\) and the direct CP asymmetry in B0 → K*0γ, Nucl. Phys. B 867, 1 (2013), arXiv: 1209.0313

    ADS  Google Scholar 

  744. Belle Collaboration, Y. Ushiroda, et al., Time-dependent CP asymmetries in B 0s → K 0s π0γ transitions, Phys. Rev. D 74, 111104 (2006), arXiv: hep-ex/0608017

    Article  Google Scholar 

  745. BaBar Collaboration, B. Aubert, et al., Measurement of time-dependent CP asymmetry in B0Ks0π0γ decays, Phys. Rev. D 78, 071102 (2008), arXiv: 0807.3103

    Article  ADS  Google Scholar 

  746. LHCb Collaboration, R. Aaij, et al., Measurement of CP-violating and mixing-induced observables in Bs0 → ϕγ decays, Phys. Rev. Lett. 123, 081802 (2019), arXiv: 1905.06284

    Article  ADS  Google Scholar 

  747. D. Becirevic and E. Schneider, On transverse asymmetries in B → K*ℓ+, Nucl. Phys. B 854, 321 (2012), arXiv: 1106.3283

    Article  ADS  Google Scholar 

  748. LHCb Collaboration, R. Aaij, et al., Strong constraints on the b → sγ photon polarisation from B0 K*0e+e decays, J. High Energy Phys. 12, 081 (2020), arXiv: 2010.06011

    ADS  Google Scholar 

  749. M. Gronau and D. Pirjol, Photon polarization in radiative B decays, Phys. Rev. D 66, 054008 (2002), arXiv: hep-ph/0205065

    Article  ADS  Google Scholar 

  750. E. Kou, A. Le Yaouanc, and A. Tayduganov, Determining the photon polarization of the b → sγ using the B → K1(1270) → (Kππ)γ decay, Phys. Rev. D 83, 094007 (2011), arXiv: 1011.6593

    Article  ADS  Google Scholar 

  751. LHCb Collaboration, R. Aaij, et al., Observation of photon polarization in the b → sγ transition, Phys. Rev. Lett. 112, 161801 (2014), arXiv: 1402.6852

    Article  ADS  Google Scholar 

  752. W. Wang, F.-S. Yu, and Z.-X. Zhao, Novel method to reliably determine the photon helicity in B → K1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083

    Article  ADS  Google Scholar 

  753. H.-Y. Cheng, X.-R. Lyu, and Z.-Z. Xing, Charm physics in the high-luminosity super τ-charm factory, in: 2022 Snowmass Summer Study, 2022, arXiv: 2203.03211

  754. LHCb Collaboration, R. Aaij, et al., First observation of the radiative Λ 0b → Λγ decay, Phys. Rev. Lett. 123, 031801 (2019), arXiv: 1904.06697

    Article  ADS  Google Scholar 

  755. M. Gremm, F. Kruger, and L. M. Sehgal, Angular distribution and polarization of photons in the inclusive decay Λb → Xsγ, Phys. Lett. B 355, 579 (1995), arXiv: hep-ph/9505354

    Article  ADS  Google Scholar 

  756. T. Mannel and S. Recksiegel, Flavor changing neutral current decays of heavy baryons: The case Λb → Λγ, J. Phys. G 24, 979 (1998), arXiv: hep-ph/9701399

    Article  ADS  Google Scholar 

  757. G. Hiller and A. Kagan, Probing for new physics in polarized Λb decays at the Z, Phys. Rev. D 65, 074038 (2002), arXiv: hep-ph/0108074

    Article  ADS  Google Scholar 

  758. LHCb Collaboration, R. Aaij, et al., Measurement of the photon polarization in Λb/0Λγ decays, arXiv: 2111.10194, submitted to PRL

  759. BESIII Collaboration, M. Ablikim, et al., Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917

    Article  ADS  Google Scholar 

  760. Y.-M. Wang, Y. Li, and C.-D. Lü, Rare decays of Λb → Λ + γ and Λb, → Λ + ℓ+ℓ in the light-cone sum rules, Eur. Phys. J. C 59, 861 (2009), arXiv: 0804.0648

    Article  ADS  Google Scholar 

  761. T. Mannel and Y.-M. Wang, Heavy-to-light baryonic form factors at large recoil, J. High Energy Phys. 12, 067 (2011), arXiv: 1111.1849

    Article  ADS  Google Scholar 

  762. T. Gutsche, et al., Rare baryon decays Λb Λℓ+ (ℓ = e, μ, τ) and Λb, → Λγ: Differential and total rates, lepton- and hadron-side forward-backward asymmetries, Phys. Rev. D 87, 074031 (2013), arXiv: 1301.3737

    Article  ADS  Google Scholar 

  763. LHCb Collaboration, R. Aaij, et al., Search for the radiative Ξb, Ξγ decay, J. High Energy Phys. 01, 069 (2022), arXiv: 2108.07678

    Article  ADS  Google Scholar 

  764. LHCb Collaboration, R. Aaij, et al., Search for the lepton flavour violating decay B0 → K*0π±μ±, arXiv: 2209.09846 (submitted to J. High Energy Phys.)

  765. LHCb Collaboration, R. Aaij, et al., Search for the lepton-flavour violating decays B0 K*0μ±e± and Bs/0 → ϕμ±e±, arXiv: 2207.04005 (submitted to J. High Energy Phys.)

  766. LHCb Collaboration, R. Aaij, et al., Search for the lepton flavour violating decay B+ → K+μτ+ using \(B_{s2}^{*0}\) decays, J. High Energy Phys. 06, 129(2020), arXiv: 2003.04352

    Article  ADS  Google Scholar 

  767. LHCb Collaboration, R. Aaij, et al., Search for the lepton-flavour violating decays B+ → K+μ±e±, Phys. Rev. Lett. 123, 231802 (2019), arXiv: 1909.01010

    ADS  Google Scholar 

  768. LHCb Collaboration, R. Aaij, et al., Search for the lepton-flavour-violating decays Bs0 π±μ± and B0 π±μ±, Phys. Rev. Lett. 123, 211801 (2019), arXiv: 1905.06614

    Article  ADS  Google Scholar 

  769. LHCb Collaboration, R. Aaij, et al., Search for the lepton-flavour violating decays B(s)0e±μ±, J. High Energy Phys. 03, 078 (2018), arXiv: 1710.04111

    Article  Google Scholar 

  770. LHCb Collaboration, R. Aaij, et al., Search for the baryon- and lepton-number violating decays B0 → pμ and Bs0 → pμ, arXiv: 2210.10412 (submitted to Phys. Rev. D)

  771. LHCb Collaboration, R. Aaij, et al., Evidence for the decay \(B_s^0 \to {\overline K ^{*0}}{\mu ^ + }{\mu ^ - }\). High Energy Phys. 07, 020 (2018), arXiv: 1804.07167

    Article  Google Scholar 

  772. LHCb Collaboration, R. Aaij, et al., Observation of the suppressed decay Λ 0b pππ+π, J. High Energy Phys. 04, 029 (2017), arXiv: 1701.08705

    Google Scholar 

  773. LHCb Collaboration, R. Aaij, et al., First observation of the decay B+ → π+μ+π, J. High Energy Phys. 12, 125 (2012), arXiv: 1210.2645

    Article  Google Scholar 

  774. LHCb Collaboration, R. Aaij, et al., Search for the decay B0 ϕμ+μ−, J. High Energy Phys. 05, 067 (2022), arXiv: 2201.10167

    Article  ADS  Google Scholar 

  775. LHCb Collaboration, R. Aaij, et al., Search for the rare decay B0 → J/ψϕ, Chin. Phys. C 45, 043001 (2021), arXiv: 2011.06847

    Article  ADS  Google Scholar 

  776. J. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi, and M. Wiebusch, New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ, Phys. Rev. D 92, 033002 (2015), arXiv: 1412.1446

    Article  ADS  Google Scholar 

  777. J. Brod and J. Zupan, The ultimate theoretical error on γ from BDK decays, JHEP 01, 051 (2014), arXiv: 1308.5663

    Article  ADS  Google Scholar 

  778. M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265, 172 (1991)

    Article  ADS  Google Scholar 

  779. M. Gronau and D. London, How to determine all the angles of the unitarity triangle from Bd0DKs and Bs0Dϕ, Phys. Lett. B 253, 483 (1991)

    Article  ADS  Google Scholar 

  780. D. Atwood, I. Dunietz, and A. Soni, Enhanced CP violation with \(B \to K{D^0}\left( {{{\overline D }^0}} \right)\) modes and extraction of the Cabibbo-Kobayashi-Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433

    Article  ADS  Google Scholar 

  781. A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187

    Article  ADS  Google Scholar 

  782. A. Bondar and A. Poluektov, Feasibility study of model-independent approach to φ3 measurement using Dalitz plot analysis, Eur. Phys. J. C 47, 347 (2006), arXiv: hep-ph/0510246

    Article  ADS  Google Scholar 

  783. A. Bondar and A. Poluektov, The use of quantum-correlated D0 decays for φ3 measurement, Eur. Phys. J. C 55, 51 (2008), arXiv: 0801.0840

    Article  ADS  Google Scholar 

  784. LHCb Collaboration, R. Aaij, et al., Simultaneous determination of CKM angle γ and charm mixing parameters, J. High Energy Phys. 12, 141 (2021), arXiv: 2110.02350

    Article  ADS  Google Scholar 

  785. S. Malde et al., First determination of the CP content of D → π+ππ+π and updated determination of the CP contents of D → π+ππ0 and D → K+Kk0, Phys. Lett. B 747, 9 (2015), arXiv: 1504.05878

    Article  ADS  Google Scholar 

  786. BaBar Collaboration, B. Aubert, et al., Measurement of CP violation parameters with a Dalitz plot analysis of B±D(π+ππ0)K±, Phys. Rev. Lett. 99, 251801 (2007), arXiv: hep-ex/0703037

    Article  ADS  Google Scholar 

  787. CLEO Collaboration, D. Cronin-Hennessy, et al., Searches for CP violation and ππ S-wave in the dalitz-Plot of D0 → π+ππ0, Phys. Rev. D 72, 031102 (2005), Erratum: Phys. Rev. D 75, 119904 (2007), arXiv: hep-ex/0503052

    Article  ADS  Google Scholar 

  788. BaBar Collaboration, B. Aubert, et al., Amplitude analysis of the decay D0→ K+Kk0, Phys. Rev. D 76, 011102 (2007), arXiv: 0704.3593

    Article  ADS  Google Scholar 

  789. CLEO Collaboration, C. Cawlfield, et al., Measurement of interfering K*+K and K*K+ amplitudes in the decay D0K+Kπ0, Phys. Rev. D 74, 031108 (2006), arXiv: hep-ex/0606045

    Article  ADS  Google Scholar 

  790. LHCb Collaboration, R. Aaij, et al., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726

    Article  ADS  Google Scholar 

  791. W. Wang, CP violation effects on the measurement of the Cabibbo-Kobayashi-Maskawa angle γ from B → DK, Phys. Rev. Lett. 110, 061802 (2013), arXiv: 1211.4539

    Article  ADS  Google Scholar 

  792. LHCb Collaboration, R. Aaij, et al., Measurement of CP observables in B±D(*)K± and B±D(*)π± decays using two-body D final states, J. High Energy Phys. 04, 081 (2021), arXiv: 2012.09903

    Article  ADS  Google Scholar 

  793. T. Evans, et al., Improved determination of the D → Kπ+π+π coherence factor and associated hadronic parameters from a combination of \({e^ + }{e^ - } \to \psi \left( {3770} \right) \to c\bar c\,{\rm{and }}pp \to c\bar c\,X\,{\rm{data}}\), Phys. Lett. S 757, 520 (2016), Erratum: Phys. Lett. B 765, 402 (2017), arXiv: 1602.07430

    Article  ADS  Google Scholar 

  794. T. Evans, J. Libby, S. Malde, and G. Wilkinson, Improved sensitivity to the CKM phase γ through binning phase space in BDK, D → K+ππ+π+decays, Phys. Lett. B 802, 135188 (2020), arXiv: 1909.10196. 112

    Article  Google Scholar 

  795. LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ with b±D[K±π±π±π±h± decays using a binned phase-space approach, arXiv: 2209.03692 (submitted to J. High Energy Phys.)

  796. LHCb Collaboration, R. Aaij, et al., Constraints on the CKM angle γ from B±→ Dh± decays using D → h±h±π0 final states, J. High Energy Phys. 07, 099 (2022), arXiv: 2112.10617

    Article  ADS  Google Scholar 

  797. CLEO Collaboration, J. Libby, et al., Model-independent determination of the strong-phase difference between \({D^0}{\rm{and}}\,{\overline D ^0} \to K_{S,L}^0{h^ + }{h^ - }\left( {h = \pi ,\,K} \right)\) and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 82, 112006 (2010), arXiv: 1010.2817

    Article  Google Scholar 

  798. BESIII Collaboration, M. Ablikim, et al., Determination of strong-phase parameters in \(D \to K_{S,L}^0{\pi ^ + }{\pi ^ - }\), Phys. Rev. Lett. 124, 241802 (2020), arXiv: 2002.12791

    Article  ADS  Google Scholar 

  799. BESIII Collaboration, M. Ablikim, et al., Model-independent determination of the relative strong-phase difference between D0 and \({\overline D ^0} \to K_{S,L}^0{\pi ^ + }{\pi ^ - }\) and its impact on the measurement of the CKM angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091

    Article  ADS  Google Scholar 

  800. BESIII Collaboration, M. Ablikim, et al., Improved model-independent determination of the strong-phase difference between D0 and \({\overline D ^0} \to K_{S,L}^0{K^ + }{K^ - }\) decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959

    Article  ADS  Google Scholar 

  801. LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ using B±DK± with D → Ds0π+π, KS0K+K decays, J. High Energy Phys. 08, 176 (2018), Erratum JHEP 10, 107 (2018), arXiv: 1806.01202

    Article  Google Scholar 

  802. LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ in B±DK± and B±± decays with D → K 0s h+h, J. High Energy Phys. 02 (2021) 0169, arXiv: 2010.08483

    ADS  Google Scholar 

  803. LHCb Collaboration, R. Aaij, et al., Constraints on the unitarity triangle angle γ from Dalitz plot analysis of B0DK+π decays, Phys. Rev. D 93, 112018 (2016), Erratum: Phys. Rev. D 94, 079902 (2016), arXiv: 1602.03455

    Article  ADS  Google Scholar 

  804. LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ and \(B_s^0 - \overline B _s^0\) mixing frequency with \(B_s^0 \to D_s^ \mp {h^ \pm }{\pi ^ \pm }{\pi ^ \mp }\) decays, J. High Energy Phys. 03, 137 (2021), arXiv: 2011.12041

    ADS  Google Scholar 

  805. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetry in \(B_s^0 \to D_s^ \mp {K^ \pm }\) decays, J. High Energy Phys. 03, 059 (2018), arXiv: 1712.07428

    Google Scholar 

  806. LHCb Collaboration, R. Aaij, et al., Observation of the decay \(B_s^0 \to {\overline D ^0}\phi \), Phys. Lett. B 727, 403 (2013), arXiv: 1308.4583

    Google Scholar 

  807. LHCb Collaboration, R. Aaij, et al., Observation of the decay \(B_s^0 \to {\overline D ^{0*}}\phi \) and search for the mode \({B^0} \to {\overline D ^0}\phi \), Phys. Rev. D 98, 071103(R) (2018), arXiv: 1807.01892

    ADS  Google Scholar 

  808. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetry in \(B_s^0 \to D_s^ \mp {K^ \pm }\) decays, J. High Energy Phys. 11, 060 (2014), arXiv: 1407.6127

    Google Scholar 

  809. D. Ao et al., Study of CKM angle γ sensitivity using flavor untagged \(B_s^0 \to {\tilde D^{\left( * \right)0}}\phi \) decays, Chin. Phys. C 45, 023003 (2021), arXiv: 2008.00668

    Article  ADS  Google Scholar 

  810. W. Wang, Determining CP violation angle γ with B decays into a scalar/tensor meson, Phys. Rev. D 85, 051301 (2012), arXiv: 1110.5194

    Article  ADS  Google Scholar 

  811. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51, 1945 (1983)

    Article  ADS  Google Scholar 

  812. Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81, 226 (2021), arXiv: 1909.12524, updated results and plots available at https://hflav.web.cern.ch

    Article  Google Scholar 

  813. LHCb Collaboration, R. Aaij, et al., Measurement of CP violation in B0→ J/ψK 0s decays, Phys. Rev. Lett. 115, 031601 (2015), arXiv: 1503.07089

    Article  ADS  Google Scholar 

  814. LHCb Collaboration, R. Aaij, et al., Measurement of CP violation in B0j/πk 0s and B0ψ(2S)k 0s decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944

    Article  Google Scholar 

  815. BaBar Collaboration, B. Aubert, et al., Measurement of time-dependent CP asymmetry in \({B^0} \to c\bar c{K^{\left( * \right)0}}\) Decays, Phys. Rev. D 79, 072009 (2009), arXiv: 0902.1708

    Article  ADS  Google Scholar 

  816. Belle Collaboration, I. Adachi, et al., Precise measurement of the CP violation parameter \({\rm{sin}}\left( {2{\phi _1}} \right)\) in \({B^0} \to \left( {c\bar c} \right){K^0}\) decays, Phys. Rev. Lett. 108, 171802 (2012), arXiv: 1201.4643

    Google Scholar 

  817. M. Ciuchini, M. Pierini, and L. Silvestrini, Effect of penguin operators in the B0J/ψK0 CP asymmetry, Phys. Rev. Lett. 95, 221804 (2005), arXiv: hep-ph/0507290

    Article  ADS  Google Scholar 

  818. BaBar, Belle Collaboration, I. Adachi, et al., First evidence for cos(2β) >0 and resolution of the Cabibbo-Kobayashi-Maskawa quark-mixing unitarity triangle ambiguity, Phys. Rev. Lett. 121, 261801 (2018), arXiv: 1804.06152

    Article  ADS  Google Scholar 

  819. BaBar, Belle Collaboration, I. Adachi, et al., Measurement of cos(2β) in B0D(*)h0 with D → Ks0π+π decays by a combined time-dependent Dalitz plot analysis of BaBar and Belle data, Phys. Rev. D 98, 112012 (2018), arXiv: 1804.06153

    Article  ADS  Google Scholar 

  820. CKMfitter Group, J. Charles, et al., Current status of the standard model CKM fit and constraints on ΔF = 2 new physics, Phys. Rev. D 91, 073007 (2015), arXiv: 1501.05013, updated results and plots available at //ckmfitter.in2p3.fr/

    Article  ADS  Google Scholar 

  821. LHCb Collaboration, R. Aaij, et al., Updated measurement of time-dependent CP-violating observables in → J/ψK+K decays, Eur. Phys. J. C 79, 706 (2019), Erratum: Eur. Phys. J. C 80, 601 (2020), arXiv: 1906.08356

    Article  ADS  Google Scholar 

  822. LHCb Collaboration, R. Aaij, et al., Measurement of the CP-violating phase ϕs from \(B_s^0 \to J/\psi {\pi ^ + }{\pi ^ - }\) decays in 13 TeV pp collisions, Phys. Lett. B 797, 134789 (2019), arXiv: 1903.05530

    Article  Google Scholar 

  823. LHCb Collaboration, R. Aaij, et al., Resonances and CP-violation in \({B^0}_{\rm{s}} \to J/\psi {K^ + }{K^ - }\) decays in the mass region above the ϕ(1020), J. High Energy Phys. 08, 037 (2017), arXiv: 1704.08217

    Google Scholar 

  824. LHCb Collaboration, R. Aaij, et al., Measurement of the CP violating phase and decay-width difference in B 0s → ψ(2S)ϕ decays, Phys. Lett. B 762, 253 (2016), arXiv: 1608.04855

    Article  ADS  Google Scholar 

  825. LHCb Collaboration, R. Aaij, et al., Measurement of the CP-violating phase \({B^0}_{\rm{s}} \to J/\psi {K^ + }{K^ - }\) decays, Phys. Rev. Lett. 113, 211801 (2014), arXiv: 1409.4619

    ADS  Google Scholar 

  826. LHCb Collaboration, R. Aaij, et al., First measurement of the CP-violating phase in \(B_s^0 \to J/\psi \left( {{e^ + }{e^ - }} \right)\phi \) decays, arXiv: 2105.14738 (2021)

  827. ATLAS Collaboration, G. Aad, et al., Measurement of the CP-violating phase ϕs in B 0s J/ψϕ decays in ATLAS at 13 TeV, Eur. Phys. J. C 81, 342(2021), arXiv: 2001.07115

    ADS  Google Scholar 

  828. CMS Collaboration, A. M. Sirunyan, et al., Measurement of the CP-violating phase ϕs in the B 0s → J/ψϕ(1020) → μ+μ−K+K channel in proton-proton collisions at = 13 TeV, Phys. Lett. B 816, 136188 (2021), arXiv: 2007.02434

    Article  Google Scholar 

  829. X. Liu, W. Wang, and Y. Xie, Penguin pollution in B → J/ψV decays and impact on the extraction of the \({B_{{s^ - }}}\bar B_s^0\) mixing phase, Phys. Rev. D 89, 094010 (2014), arXiv: 1309.0313

    Article  ADS  Google Scholar 

  830. S. Faller, M. Jung, R. Fleischer, and T. Mannel, The golden modes B0J/ψKS,L in the era of precision flavour physics, Phys. Rev. D 79, 014030 (2009), arXiv: 0809.0842

    Article  ADS  Google Scholar 

  831. H. Nagahiro, L. Roca, A. Hosaka, and E. Oset, Hidden gauge formalism for the radiative decays of axialvector mesons, Phys. Rev. D 79, 014015 (2009), arXiv: 0809.0943

    Article  ADS  Google Scholar 

  832. K. De Bruyn, R. Fleischer, and P. Koppenburg, Extracting γ and penguin topologies through CP violation in \(B_s^0 \to J/\psi K_S^0\), Eur. Phys. J. C 70, 1025 (2010), arXiv: 1010.0089

    Article  ADS  Google Scholar 

  833. M. Jung, Determining weak phases from B → J/ψP decays, Phys. Rev. D 86, 053008 (2012), arXiv: 1206.2050

    Article  ADS  Google Scholar 

  834. K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in \(B_d^0 \to J/\psi K_S^0\) and B 0s → J/ψϕ, J. High Energy Phys. 03, 145 (2015), arXiv: 1412.6834

    Article  Google Scholar 

  835. P. Frings, U. Nierste, and M. Wiebusch, Penguin contributions to CP phases in Bd,s decays to charmonium, Phys. Rev. Lett. 115, 061802 (2015), arXiv: 1503.00859

    Article  ADS  Google Scholar 

  836. M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami, In pursuit of new physics with \(B_d^0 \to J/\psi {K^0}\) and B 0s J/ψϕ decays at the high-precision frontier, J. Phys. G 48, 065002 (2021), arXiv: 2010.14423

    Article  ADS  Google Scholar 

  837. LHCb Collaboration, R. Aaij, et al., Measurement of the CP-violating phase \({\rm{\beta }}\;{\rm{in}}\;{\bar B^0} \to J/\psi {\pi ^ + }{\pi ^ - }\) decays and limits on penguin effects, Phys. Lett. B 742, 38 (2015), arXiv: 1411.1634

    Article  Google Scholar 

  838. LHCb Collaboration, R. Aaij, et al., Measurement of CP violation parameters and polarisation fractions in \(B_s^0 \to J/\psi {\bar K^{*0}}\) decays, J. High Energy Phys. 11, 082 (2015), arXiv: 1509.00400

    Google Scholar 

  839. LHCb Collaboration, R. Aaij, et al., Measurement of CP violation in the B 0s → ϕϕ decay and search for the B0ϕϕ, decay, J. High Energy Phys. 12, 155 (2019), arXiv: 1907.10003.

    Article  ADS  Google Scholar 

  840. LHCb Collaboration, R. Aaij, et al., First measurement of the CP-violating phase ϕ ds in B 0s (K+k)(Kπ+) decays, J. High Energy Phys. 03, 140 (2018), arXiv: 1712.08683

    Article  Google Scholar 

  841. H.-n. Li, Y.-L. Shen, and Y.-M. Wang, Next-to-leading-order corrections to B → π form factors in kT factorization, Phys. Rev. D 85, 074004 (2012), arXiv: 1201.5066

    Article  ADS  Google Scholar 

  842. Y.-M. Wang and Y.-L. Shen, QCD corrections to 5→ π form factors from light-cone sum rules, Nucl. Phys. B 898, 563 (2015), arXiv: 1506.00667

    Article  ADS  MathSciNet  Google Scholar 

  843. Y.-M. Wang, Y.-B. Wei, Y.-L. Shen, and C.-D. Lü, Perturbative corrections to B → D form factors in QCD, JHEP 06, 062 (2017), arXiv: 1701.06810

    Article  ADS  Google Scholar 

  844. C.-D. Lü, Y.-L. Shen, Y.-M. Wang, and Y.-B. Wei, QCD calculations of B → π, K form factors with higher-twist corrections, J. High Energy Phys. 01, 024 (2019), arXiv: 1810.00819

    Article  ADS  Google Scholar 

  845. A. Khodjamirian, C. Klein, T. Mannel, and Y.-M. Wang, Form factors and strong couplings of heavy baryons from QCD light-cone sum rules, J. High Energy Phys. 09, 106 (2011), arXiv: 1108.2971

    Article  ADS  Google Scholar 

  846. KMfitter group, J. Charles, et al., CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184

    Article  ADS  Google Scholar 

  847. HCb Collaboration, R. Aaij, et al., Determination of the quark coupling strength ∣Vub∣ using baryonic decays, Nat. Phys. 11, 743 (2015), arXiv: 1504.01568

    Article  Google Scholar 

  848. ESIII Collaboration, M. Ablikim, et al., Measurements of absolute hadronic branching fractions of A +c baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380

    Article  ADS  Google Scholar 

  849. HCb Collaboration, R. Aaij, et al., First observation of the decay \(B_s^0 \to {K^0}{\mu ^ + }{v_\mu }\) and measurement of ∣ Vub∣/ ∣Vcb∣, Phys. Rev. Lett. 126, 081804 (2021), arXiv: 2012.05143

    ADS  Google Scholar 

  850. HCb Collaboration, R. Aaij, et al., Measurement of ∣Vcb∣ with B0D(*)sμ+v decays, Phys. Rev. D 101, 072004 (2020), arXiv: 2001.03225

    Article  ADS  Google Scholar 

  851. I. Caprini, L. Lellouch, and M. Neubert, Dispersive bounds on the shape of B → D(*)ℓv form factors, Nucl. Phys. B 530, 153 (1998), arXiv: hep-ph/9712417

    Article  ADS  Google Scholar 

  852. C. G. Boyd, B. Grinstein, and R. F. Lebed, Constraints on form factors for exclusive semileptonic heavy to light meson decays, Phys. Rev. Lett. 74, 4603 (1995), arXiv: hep-ph/9412324

    Article  ADS  Google Scholar 

  853. C. G. Boyd, B. Grinstein, and R. F. Lebed, Precision corrections to dispersive bounds on form factors, Phys. Rev. D 56, 6895 (1997), arXiv: hep-ph/9705252

    Article  ADS  Google Scholar 

  854. LHCb Collaboration, R. Aaij, et al., A precise measurement of the B0 meson oscillation frequency, Eur. Phys. J. C 76, 412 (2016), arXiv: 1604.03475

    Article  Google Scholar 

  855. LHCb Collaboration, R. Aaij, et al., Precise determination of the \(B_s^0 - \bar B_s^0\) oscillation frequency, Nat. Phys. 18, 1 (2022), arXiv: 2104.04421

    Article  Google Scholar 

  856. Flavour Lattice Averaging Group, S. Aoki, et al., FLAG review 2019, Eur. Phys. J. C 80, 113 (2020), arXiv: 1902.08191

    Article  Google Scholar 

  857. A. J. Buras, M. E. Lautenbacher, and G. Ostermaier, Waiting for the top quark mass, \({K^ + } \to {\pi ^ + }v\bar v,\;B_s^0 - \bar B_s^0\) mixing and CP asymmetries in B-decays, Phys. Rev. D 50, 3433 (1994), arXiv: hep-ph/9403384

    Article  ADS  Google Scholar 

  858. BaBar Collaboration, B. Aubert, et al., Evidence for \({D^0} - {\bar D^0}\) mixing, Phys. Rev. Lett. 98, 211802 (2007), arXiv: hep-ex/0703020

    ADS  Google Scholar 

  859. BELLE Collaboration, M. Staric, et al., Evidence for \({D^0} - {\bar D^0}\) mixing, Phys. Rev. Lett. 98, 211803 (2007), arXiv: hep-ex/0703036

    Google Scholar 

  860. CDF Collaboration, T. Aaltonen, et al., Evidence for \({D^0} - {\bar D^0}\) mixing using the CDF II detector, Phys. Rev. Lett. 100, 121802 (2008), arXiv: 0712.1567

    Article  ADS  Google Scholar 

  861. BaBar Collaboration, B. Aubert, et al., Measurement of \({D^0} - {\bar D^0}\) mixing from a time-dependent amplitude analysis of D0→ K+ππ0 decays, Phys. Rev. Lett. 103, 211801 (2009), arXiv: 0807.4544

    Article  ADS  Google Scholar 

  862. BaBar Collaboration, B. Aubert et al., Measurement of \({D^0} - {\bar D^0}\) mixing using the ratio of lifetimes for the decays D0Kk+ and K+K, Phys. Rev. D 80, 071103 (2009), arXiv: 0908.0761

    Article  ADS  Google Scholar 

  863. LHCb Collaboration, R. Aaij, et al., Observation of \({D^0} - {\bar D^0}\) oscillations, Phys. Rev. Lett. 110, 101802 (2013), arXiv: 1211.1230

    Article  Google Scholar 

  864. S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, A Cicerone for the physics of charm, Riv. Nuovo Cim. 26, 1 (2003), arXiv: hep-ex/0309021

    Google Scholar 

  865. LHCb Collaboration, R. Aaij, et al., Measurement of \({D^0} - {\bar D^0}\) mixing parameters and search for CP violation using D0→K+π decays, Phys. Rev. Lett. 111, 251801 (2013), arXiv: 1309.6534

    Article  Google Scholar 

  866. LHCb Collaboration, R. Aaij, et al., Measurements of charm mixing and CP violation using D0→ K±π decays, Phys. Rev. D 95, 052004 (2017), Erratum: Phys. Rev. D 96, 099907 (2017), arXiv: 1611.06143

    Article  ADS  Google Scholar 

  867. LHCb Collaboration, R. Aaij, et al., Updated determination of \({D^0} - {\bar D^0}\) mixing and CP violation parameters with D0→ K+k decays, Phys. Rev. D 97, 031101 (2018), arXiv: 1712.03220

    Article  ADS  Google Scholar 

  868. LHCb Collaboration, R. Aaij et al., Model-independent measurement of mixing parameters in D0→ K 0s π+π− decays, J. High Energy Phys. 04, 033 (2016), arXiv: 1510.01664

    Google Scholar 

  869. LHCb Collaboration, R. Aaij, et al., Measurement of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 122, 231802 (2019), arXiv: 1903.03074

    Article  ADS  Google Scholar 

  870. LHCb Collaboration, R. Aaij, et al., Observation of the mass difference between neutral charm-meson eigenstates, Phys. Rev. Lett. 127, 111801 (2021), arXiv: 2106.03744

    Article  ADS  Google Scholar 

  871. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetry in D0→ KK+ and D0 ππ+ decays, J. High Energy Phys. 07, 041 (2014), arXiv: 1405.2797

    Google Scholar 

  872. LHCb Collaboration, R. Aaij, et al., Measurement of the difference of time-integrated CP asymmetries in D0KK+ and D0> → kk+ decays, Phys. Rev. Lett. 116, 191601 (2016), arXiv: 1602.03160

    Article  ADS  Google Scholar 

  873. LHCb Collaboration, R. Aaij, et al., Measurement of the charm-mixing parameter yCP, Phys. Rev. Lett. 122, 011802 (2019), arXiv: 1810.06874

    Article  ADS  Google Scholar 

  874. LHCb Collaboration, R. Aaij, et al., Measurement of indirect CP asymmetries in D0→ KK+ and D0 ππ+ decays using semileptonic B decays, J. High Energy Phys. 04, 043 (2015), arXiv: 1501.06777

    Google Scholar 

  875. LHCb Collaboration, R. Aaij, et al., Measurement of the CP violation parameter AΓ in D0K+K and D0 Γ+Γ decays, Phys. Rev. Lett. 118, 261803 (2017), arXiv: 1702.06490

    Article  ADS  Google Scholar 

  876. LHCb Collaboration, R. Aaij, et al., Updated measurement of decay-time-dependent CP asymmetries in D0K+K and D0 → π+π decays, Phys. Rev. D 101, 012005 (2020), arXiv: 1911.01114

    Article  ADS  Google Scholar 

  877. LHCb Collaboration, R. Aaij, et al., Search for time-dependent CP violation in D0→ K+K and D0 π+π decays, Phys. Rev. D 104, 072010 (2021), arXiv: 2105.09889

    Article  ADS  Google Scholar 

  878. LHCb Collaboration, R. Aaij, et al., First observation of \({D^0} - {\bar D^0}\) oscillations in D0 K+π+ππ− decays and a measurement of the associated coherence parameters, Phys. Rev. Lett. 116, 241801 (2016), arXiv: 1602.07224

    Article  ADS  Google Scholar 

  879. LHCb Collaboration, R. Aaij, et al., Evidence for CP violation in time-integrated D0→ hh+ decay rates, Phys. Rev. Lett. 108, 111602 (2012), arXiv: 1112.0938

    Article  Google Scholar 

  880. LHCb Collaboration, R. Aaij, et al., Search for direct CP violation in D0→ hh+ modes using semileptonic B decays, Phys. Lett. B 723, 33 (2013), arXiv: 1303.2614

    Article  Google Scholar 

  881. LHCb Collaboration, R. Aaij, et al., Search for CP violation in D+ ϕπ+ and D +s → K 0s π+ decays, J. High Energy Phys. 06, 112 (2013), arXiv: 1303.4906

    Google Scholar 

  882. LHCb Collaboration, R. Aaij et al., Search for CP violation in \({D^0} - {\bar D^0}\) decays, J. High Energy Phys. 10, 025 (2014), arXiv: 1406.2624

    Google Scholar 

  883. LHCb Collaboration, R. Aaij, et al., Measurement of the time-integrated CP asymmetry in D0 K 0s K 0s decays, J. High Energy Phys. 10, 055 (2015), arXiv: 1508.06087

    Google Scholar 

  884. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetries in \({D^ \pm } \to K_S^0{K^ \pm }\;{\rm{and}}\;D_s^ \pm \to K_S^0{\pi ^{^ \pm }}\) decays, Phys. Lett. B 771, 21 (2017), arXiv: 1701.01871

    ADS  Google Scholar 

  885. LHCb Collaboration, R. Aaij, et al., Measurement of the time-integrated CP asymmetry in D0 K 0s K 0s decays, J. High Energy Phys. 11, 048 (2018), arXiv: 1806.01642

    Article  Google Scholar 

  886. LHCb Collaboration, R. Aaij, et al., Search for CP violation in \({D^ \pm } \to {\eta ^\prime }{\pi ^ \pm }{\rm{and}}\,D_s^ \pm \to {\eta ^\prime }{\pi ^ \pm }\) and D+ ϕπ+ decays, Phys. Rev. Lett. 122, 191803 (2019), arXiv: 1903.01150

    ADS  Google Scholar 

  887. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetry in D0 K 0s K 0s decays, Phys. Rev. D 104, L031102 (2021), arXiv: 2105.01565

    Article  ADS  Google Scholar 

  888. LHCb Collaboration, R. Aaij, et al., Search for CP violation in D(s)+h+π0 and D(s)+h+η decays, J. High Energy Phys. 06, 019 (2021), arXiv: 2103.11058

    ADS  Google Scholar 

  889. LHCb Collaboration, R. Aaij, et al., Measurement of CP asymmetries in D(s)+ → η′π+ and D(s)+ → η′π+ decays, arXiv: 2204.12228 (to be published in J. High Energy Phys.)

  890. LHCb Collaboration, R. Aaij, et al., Measurement of the time-integrated CP asymmetry in D0→ KK+decays, arXiv: 2209.03179 (submitted to Phys. Rev. Lett.)

  891. LHCb Collaboration, R. Aaij, et al., Search for CP violation through an amplitude analysis of D0K+Kπ+π decays, J. High Energy Phys. 02, 126 (2019), arXiv: 1811.08304

    Article  Google Scholar 

  892. LHCb Collaboration, R. Aaij, et al., Search for CP violation in D+ → KK+π+ decays, Phys. Rev. D 84, 112008 (2011), arXiv: 1110.3970

    Article  Google Scholar 

  893. LHCb Collaboration, R. Aaij, et al., Model-independent search for CP violation in D+ → KK+π+π and D0 → ππ+ππ+ decays, Phys. Lett. B 726, 623 (2013), arXiv: 1308.3189

    Article  Google Scholar 

  894. LHCb Collaboration, R. Aaij, et al., Search for CP violation in the decay D+ → ππ+π+, Phys. Lett. B 728, 585 (2014), arXiv: 1310.7953

    Article  Google Scholar 

  895. LHCb Collaboration, R. Aaij, et al., Search for CP violation using T-odd correlations in D0→ K+ Kk+π+ πdecays, J. High Energy Phys. 10, 005 (2014), arXiv: 1408.1299

    Google Scholar 

  896. LHCb Collaboration, R. Aaij, et al., Search for CP violation in \(\Xi _c^ + \to p{K^ - }{\pi ^ + }\) decays with model-independent techniques, Eur. Phys. J. C 80, 986 (2020), arXiv: 2006.03145

    Article  ADS  Google Scholar 

  897. LHCb Collaboration, R. Aaij, et al., Search for CP violation in D0→ ππ+π0 decays with the energy test, Phys. Lett. B 740, 158 (2015), arXiv: 1410.4170

    Article  ADS  Google Scholar 

  898. LHCb Collaboration, R. Aaij, et al., Search for CP violation in the phase space of D0→ π+ππ+πdecays, Phys. Lett. B 769, 345 (2017), arXiv: 1612.03207

    Article  ADS  Google Scholar 

  899. M. Williams, Observing CP violation in many-body decays, Phys. Rev. D 84, 054015 (2011), arXiv: 1105.5338

    Article  ADS  Google Scholar 

  900. C. Parkes, et al., On model-independent searches for direct CP violation in multi-body decays, J. Phys. G 44, 085001 (2017), arXiv: 1612.04705

    Article  ADS  Google Scholar 

  901. LHCb Collaboration, R. Aaij, et al., Search for CP violation in Λ +c pKK+ and Λ +c → pππ+ decays, J. High Energy Phys. 03, 182 (2018), arXiv: 1712.07051

    Google Scholar 

  902. LHCb Collaboration, R. Aaij, et al., Measurement of mixing and CP violation parameters in two-body charm decays, J. High Energy Phys. 04, 129 (2012), arXiv: 1112.4698

    Article  Google Scholar 

  903. LHCb Collaboration, R. Aaij, et al., Measurements of indirect CP asymmetries in D0→ KK+ and D0→ ππ+ decays, Phys. Rev. Lett. 112, 041801 (2014), arXiv: 1310.7201

    Article  ADS  Google Scholar 

  904. LHCb Collaboration, R. Aaij, et al., Measurement of the charm mixing parameter \({y_{{\rm{CP}} - y_{CP}^{K\pi }}}\) using two-body D0 meson decays, Phys. Rev. D 105, 092013 (2022), arXiv: 2202.09106

    Article  ADS  Google Scholar 

  905. T. Pajero and M. J. Morello, Mixing and CP violation in D0→ Kπ+ decays, J. High Energy Phys. 03, 162 (2022), arXiv: 2106.02014

    Article  ADS  Google Scholar 

  906. LHCb Collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report, CERN-LHCC-2012-007, 2012

  907. O. Aberle, et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs, CERN, Geneva, 10 (2020)

    Google Scholar 

  908. LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN-LHCC-2017-003, 2017

  909. S. Hashimoto, et al., Letter of intent for KEK super B factory KEK-REPORT-2004-4, 2004

  910. Y. Ohnishi, et al., Accelerator design at SuperKEKB, Prog. Theor. Exp. Phys. 2013, 03A011 (2013)

    Article  Google Scholar 

  911. CEPC Study Group, M. Dong, et al., CEPC Conceptual Design Report: Volume 2, Physics & Detector, arXiv: 1811.10545 (2018)

  912. FCC Collaboration, A. Abada, et al., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228, 261 (2019)

    Article  Google Scholar 

  913. BESIII Collaboration, M. Ablikim, et al., Design and construction of the BESIII Detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960

    Article  ADS  Google Scholar 

  914. BESIII Collaboration, M. Ablikim et al., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983

    Article  Google Scholar 

  915. G. Wilkinson, Charming synergies: The role of charm-threshold studies in the search for physics beyond the Standard Model, Sci. Bull. 66, 2251 (2021), arXiv: 2107.08414

    Article  Google Scholar 

  916. SCTF Collaboration, D. A. Epifanov, Project of super charm-tau factory, Phys. Atom. Nucl. 83, 944 (2020)

    Article  ADS  Google Scholar 

  917. H. P. Peng, Y. H. Zheng, and X. R. Zhou, Super taucharm facility of China, Physics 49, 513 (2020)

    Google Scholar 

  918. LHCb Collaboration, LHCb Trigger and Online Upgrade Technical Design Report, CERN-LHCC-2014-016, 2014

  919. LHCb Collaboration, LHCb VELO Upgrade Technical Design Report, CERN-LHCC-2013-021, 2013

  920. LHCb Collaboration, LHCb Tracker Upgrade Technical Design Report, CERNLHCC-2014-001, 2014

  921. LHCb Collaboration, LHCb PID Upgrade Technical Design Report, CERN-LHCC-2013-022, 2013

  922. LHCb Collaboration, LHCb Upgrade Software and Computing, CERN-LHCC-2018-007, 2018

  923. LHCb Collaboration, Computing Model of the Upgrade LHCb experiment, CERNLHCC-2018-014, 2018

  924. LHCb Collaboration, LHCb Upgrade GPU High Level Trigger Technical Design Report, CERN-LHCC-2020-006, 2020

  925. LHCb Collaboration, LHCb SMOG Upgrade, CERN-LHCC-2019-005, 2019

  926. I. Efthymiopoulos, et al., LHCb Upgrades and operation at 1034 cm−2S−1 luminosity — a first study, CERN-ACC-NOTE-2018-0038, 2018

  927. LHCb Collaboration, LHCb Framework TDR for the LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN-LHCC-2021-012, 2022

  928. LHCb Collaboration, R. Aaij, et al., and A. Bharucha et al., Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73, 2373 (2013), arXiv: 1208.3355

    Article  ADS  Google Scholar 

  929. LHCb Collaboration, Updated sensitivity projections for the LHCb Upgrade, LHCb-PUB-2013-015, CERN-LHCb-PUB-2013-015, CERN, Geneva, 2013

    Google Scholar 

  930. Belle-II Collaboration, W. Altmannshofer, et al., The Belle II physics book, Prog. Theor. Exp. Phys. 2019, 123C01 (2019), Erratum: Prog. Theor. Exp. Phys. 2020, 029201 (2020), arXiv: 1808.10567

    Article  Google Scholar 

  931. LHCb Collaboration, Updated LHCb combination of the CKM angle γ, LHCb- CONF-2020-003, 2020

  932. LHCb Collaboration, R. Aaij, et al., Measurement of CP violation in \({B^0} \to J/\psi K_S^0\;{\rm{and}}\;{B^0} \to \psi \left( {2S} \right)K_S^0\) decays, J. High Energy Phys. 11, 170 (2017), arXiv: 1709.03944

    Google Scholar 

  933. LHCb Collaboration, R. Aaij et al., Precision measurement of CP violation in B 0s → J/ψK+K decays, Phys. Rev. Lett. 114, 041801 (2015), arXiv: 1411.3104

    Article  ADS  Google Scholar 

  934. ATLAS Collaboration, ATLAS B-physics studies at increased LHC luminosity, potential for CP-violation measurement in the B 0s → J/ψϕ decay, ATL-PHYS-PUB-2013-010, 2013

  935. CMS Collaboration, CP-violation studies at the HL-LHC with CMS using Bs/0 decays to J/ψϕ (1020), CMS-PAS-FTR-18-041, 2018

  936. LHCb Collaboration, R. Aaij et al., Measurement of CP violation in B 0s →ϕϕ decays, Phys. Rev. D 90, 052011 (2014), arXiv: 1407.2222

    Article  ADS  Google Scholar 

  937. CMS Collaboration, ECFA 2016: Prospects for selected standard model measurements with the CMS experiment at the High-Luminosity LHC, CMS-PAS-FTR-16-006, 2017

  938. LHCb Collaboration, R. Aaij, et al., Measurement of the CP asymmetry in \(B_s^0 - \bar B_s^0\) mising, Phys. Rev. Lett. 117, 061803 (2016), arXiv: 1605.09768

    Article  ADS  Google Scholar 

  939. CMS Collaboration, B Physics analyses for the Phase-II Upgrade Technical Proposal, CMS-PAS-FTR-14-015, 2015

  940. CMS Collaboration, Measurement of rare B → μ+μ decays with the Phase-2 upgraded CMS detector at the HL-LHC, CMS-PAS-FTR-18-013, 2018

  941. LHCb Collaboration, R. Aaij, et al., Measurement of the ratio of branching fractions \({{{\cal B}\left( {{{\bar B}^0} \to {D^{* + }}{\tau ^ - }_{{{\bar \nu }_\tau }}} \right)} \mathord{\left/{\vphantom {{{\cal B}\left( {{{\bar B}^0} \to {D^{* + }}{\tau ^ - }_{{{\bar \nu }_\tau }}} \right)} {{\cal B}\left( {{{\bar B}^0} \to {D^{* + }}{\mu ^ - }_{\bar \nu \mu }} \right)}}} \right.\kern-\nulldelimiterspace} {{\cal B}\left( {{{\bar B}^0} \to {D^{* + }}{\mu ^ - }_{\bar \nu \mu }} \right)}}\), Phys. Rev. Lett. 115, 111803 (2015) Publisher’s Note, Phys. Rev. Lett. 115, 159901, (2015), arXiv: 1506.08614

    ADS  Google Scholar 

  942. LHCb Collaboration, R. Aaij, et al., Test of lepton flavor universality by the measurement of the B0D*π+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97, 072013 (2018), arXiv: 1711.02505

    Article  ADS  Google Scholar 

  943. LHCb Collaboration, R. Aaij, et al., Measurement of the ratio of branching fractions \({{{\cal B}\left( {B_c^ + \to J/\psi {\tau ^ + }{v_\tau }} \right)} \mathord{\left/{\vphantom {{{\cal B}\left( {B_c^ + \to J/\psi {\tau ^ + }{v_\tau }} \right)} {{\cal B}\left( {B_c^ + \to J/\psi {\mu ^ + }{v_\mu }} \right)}}} \right.\kern-\nulldelimiterspace} {{\cal B}\left( {B_c^ + \to J/\psi {\mu ^ + }{v_\mu }} \right)}}\), Phys. Rev. Lett 120, 121801 (2018), arXiv: 1711.05623

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China under Grant Nos. 2017YFA0402100 and 2022YFA1601900, the National Natural Science Foundation of China (NSFC) under Grant Nos. 11435003, 11575091, 11575094, 11925504, 11975015, 12175245, 12175005, 11705209, 12205312, 12275100, 11961141015 and 12061141007, Chinese Academy of Sciences, Fundamental Research Funds for the Central Universities, Peking University Funds for the New Faculty Startup program. We thank Franz Muheim and Niels Tuning for suggestions in improving the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, Y., Qian, W. et al. Heavy flavour physics and CP violation at LHCb: A ten-year review. Front. Phys. 18, 44601 (2023). https://doi.org/10.1007/s11467-022-1247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1247-1

Keywords

Navigation