Skip to main content
Log in

Experimental realization of strong effective magnetic fields in optical superlattice potentials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the experimental generation of large effective magnetic fields for ultracold atoms using photon-assisted tunneling in an optical superlattice. The underlying method does not rely on the internal structure of the atoms and, therefore, constitutes a general approach to realize widely tunable artificial gauge fields without the drawbacks of near-resonant optical potentials. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov–Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for non-interacting particles. We provide a local measurement of the phase acquired by single particles due to photon-assisted tunneling. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the effective magnetic field is directly revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Tsui, H. Stormer, A. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  2. R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Google Scholar 

  3. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  4. A. Fetter, Rev. Mod. Phys. A. 81, 647 (2009)

    Article  ADS  Google Scholar 

  5. N. Cooper, Adv. Phys. 57 (2008)

  6. K. Madison, F. Chevy, W. Wohlleben, W. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  7. J. Abo-Shaeer, C. Raman, J. Vogels, W. Ketterle, Science. 292, 476 (2001)

    Article  ADS  Google Scholar 

  8. V. Schweikhard et al. Phys. Rev. Lett. 92, 40404 (2004)

    Article  ADS  Google Scholar 

  9. V. Bretin et al. Phys. Rev. Lett. 92, 50403 (2004)

  10. N. Cooper, N. Wilkin, J. Gunn, Phys. Rev. Lett. 87, 120405 (2001)

    Article  ADS  Google Scholar 

  11. Y. Lin et al. Nature. 462, 628 (2009)

    Article  ADS  Google Scholar 

  12. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Ohberg Rev. Mod. Phys. 83, 1523–1543 (2011)

    Article  ADS  Google Scholar 

  13. D. Jaksch, P. Zoller, New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  14. F. Gerbier, J. Dalibard, New J. Phys. 12, 033007 (2010)

    Article  ADS  Google Scholar 

  15. E. Mueller, Phys. Rev. A 70, 041603 (2004)

    Article  ADS  Google Scholar 

  16. R.E. Peierls, Z. Phys. 80, 763 (1993)

    Article  ADS  Google Scholar 

  17. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  18. K. Jiménez-García et al. Phys. Rev. Lett. 108, 225303 (2012)

    Google Scholar 

  19. J. Struck, et al. Phys. Rev. Lett. 108, 225304 (2012)

    Article  ADS  Google Scholar 

  20. A. Eckardt, C. Weiss, M. Holthaus Phys. Rev. Lett. 95, 200401 (2005)

    Article  ADS  Google Scholar 

  21. A. Eckardt, M. Holthaus, Europhys. Lett. 80, 50004 (2007)

    Article  ADS  Google Scholar 

  22. H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007)

    Article  ADS  Google Scholar 

  23. Y.-A. Chen et al. Phys. Rev. Lett. 107, 210405 (2011)

    Article  ADS  Google Scholar 

  24. A. Kolovsky, Europhys. Lett. 93, 20003 (2011)

    Article  ADS  Google Scholar 

  25. L. Lim, C. Smith, A. Hemmerich, Phys. Rev. Lett. 100, 130402 (2008)

    Article  ADS  Google Scholar 

  26. L. Lim, A. Hemmerich, C. Smith, Phys. Rev. A 81, 023404 (2010)

    Article  ADS  Google Scholar 

  27. G. Möller, N. Cooper, Phys. Rev. A 82, 063625 (2010)

    Article  ADS  Google Scholar 

  28. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Phys. Rev. Lett. 107, 255301 (2011)

    Article  ADS  Google Scholar 

  29. A. Bermudez, T. Schaetz, D. Porras, Phys. Rev. Lett. 107, 150501 (2011)

    Article  ADS  Google Scholar 

  30. A. Bermudez, T. Schaetz, D. Porras, New J. Phys. 14, 053049 (2012)

    Article  ADS  Google Scholar 

  31. F. Grossmann, P. Hänggi, Europhys. Lett. 18, 571 (1992)

    Article  ADS  Google Scholar 

  32. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992)

    Article  ADS  Google Scholar 

  33. P. Hauke et al. Phys. Rev. Lett. 109, 145301 (2012)

    Article  ADS  Google Scholar 

  34. C.E. Creffield, F. Sols, Europhys. Lett. 101, 40001 (2013)

    Article  ADS  Google Scholar 

  35. J. Sebby-Strabley, M. Anderlini, P.S. Jessen, J.V. Porto, Phys. Rev. A 73, 033605 (2006)

    Article  ADS  Google Scholar 

  36. S. Fölling et al. Nature (London) 448, 1029 (2007)

    Article  ADS  Google Scholar 

  37. E. Blount, Phys. Rev. 126, 1636 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Y. Wang, C. Gong, Phys. Rev. B 74, 193301 (2006)

    Article  ADS  Google Scholar 

  39. J. Struck et al. Science. 333, 996 (2011)

    Article  ADS  Google Scholar 

  40. F. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  41. P. Harper, Proc. Phys. Soc. Lond. Sect A 68, 874 (1955)

    Article  ADS  MATH  Google Scholar 

  42. N. Cooper, Phys. Rev. Lett. 106, 175301 (2011)

    Article  ADS  Google Scholar 

  43. N. Cooper, J. Dalibard, Europhys. Lett. 95, 66004 (2011)

    Google Scholar 

  44. D.A. Abanin, T. Kitagawa, I. Bloch, E. Demler, Phys. Rev. Lett. 110, 165304 (2013)

    Google Scholar 

  45. M. Atala, M. Aidelsburger, J.T. Barreiro, D.A. Abanin, T. Kitagawa, E. Demler, I. Bloch, arXiv:1212.0572 (2012)

Download references

Acknowledgments

We acknowledge insightful discussions with N. Cooper and we thank J. T. Barreiro for careful reading of the manuscript. This work was supported by the DFG (FOR 635, FOR801), the EU (STREP, NAMEQUAM, Marie Curie Fellowship to S.N.), and DARPA (OLE program). M. Aidelsburger was additionally supported by the Deutsche Telekom Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aidelsburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aidelsburger, M., Atala, M., Nascimbène, S. et al. Experimental realization of strong effective magnetic fields in optical superlattice potentials. Appl. Phys. B 113, 1–11 (2013). https://doi.org/10.1007/s00340-013-5418-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5418-1

Keywords

Navigation