Skip to main content
Log in

Mechanical properties of lateral transition metal dichalcogenide heterostructures

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenide (TMD) monolayers attract great attention due to their specific structural, electronic and mechanical properties. The formation of their lateral heterostructures allows a new degree of flexibility in engineering electronic and optoelectronic dervices. However, the mechanical properties of the lateral heterostructures are rarely investigated. In this study, a comparative investigation on the mechanical characteristics of 1H, 1T′ and 1H/1T′ heterostructure phases of different TMD monolayers including molybdenum disulfide (MoS2) molybdenum diselenide (MoSe2), Tungsten disulfide (WS2), and Tungsten diselenide (WSe2) was conducted by means of density functional theory (DFT) calculations. Our results indicate that the impact of the lateral heterostructures has a relatively weak mechanical strength for all the TMD monolayers. The significant correlation between the mechanical properties of the TMD monolayers and their structural phases can be used to tune their stiffness of the materials. Our findings, therefore, suggest a novel strategy to manipulate the mechanical characteristics of TMDs by engineering their structural phases for their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  3. S. A. Kazemi and Y. Wang, Super strong 2D titanium carbide MXene-based materials: A theoretical prediction, J. Phys.: Condens. Matter 32(11), 11LT01 (2020)

    Google Scholar 

  4. Y. Kim, Y. Jhon, J. Park, C. Kim, S. Lee, and Y. Jhon, Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2, Sci. Rep. 6(1), 21405 (2016)

    Article  ADS  Google Scholar 

  5. W. Wei, Y. Dai, C. Niu, and B. Huang, Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells, Sci. Rep. 5(1), 17578 (2015)

    Article  ADS  Google Scholar 

  6. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)

    Article  ADS  Google Scholar 

  7. L. Oakes, R. Carter, T. Hanken, A. P. Cohn, K. Share, B. Schmidt, and C. L. Pint, Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity, Nat. Commun. 7(1), 11796 (2016)

    Article  ADS  Google Scholar 

  8. X. Zhang, J. Grajal, J. L. Vazquez-Roy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P. C. Shen, X. Ji, X. Ling, A. Zubair, Y. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, and T. Palacios, Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting, Nature 566(7744), 368 (2019)

    Article  ADS  Google Scholar 

  9. J. Wan, Y. Hao, Y. Shi, Y. X. Song, H. J. Yan, J. Zheng, R. Wen, and L. J. Wan, Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries, Nat. Commun. 10(1), 3265 (2019)

    Article  ADS  Google Scholar 

  10. L. Li, J. Chen, K. Wu, C. Cao, S. Shi, and J. Cui, The stability of metallic MoS2 nanosheets and their property change by annealing, Nanomaterials (Basel) 9(10), 1366 (2019)

    Article  Google Scholar 

  11. M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)

    Article  Google Scholar 

  12. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  13. W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)

    Article  ADS  Google Scholar 

  14. W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials, Nat. Nanotechnol. 8(12), 952 (2013)

    Article  ADS  Google Scholar 

  15. L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A. Mishchenko, Y. J. Kim, R. Gorbachev, T. Georgiou, S. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)

    Article  ADS  Google Scholar 

  16. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu, Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers, Nano Lett. 14(6), 3185 (2014)

    Article  ADS  Google Scholar 

  17. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, Coherent atomic and electronic heterostructures of single-layer MoS2, ACS Nano 6(8), 7311 (2012)

    Article  Google Scholar 

  18. Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)

    Article  ADS  Google Scholar 

  19. C. H. Naylor, W. M. Parkin, Z. L. Gao, J. Berry, S. S. Zhou, Q. C. Zhang, J. B. McClimon, L. Z. Tan, C. E. Kehayias, M. Q. Zhao, R. S. Gona, R. W. Carpick, A. M. Rappe, D. J. Srolovitz, M. Drndic, and A. T. C. Johnson, Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures, ACS Nano 11(9), 8619 (2017)

    Article  Google Scholar 

  20. S. Imani Yengejeh, J. Liu, S. A. Kazemi, W. Wen, and Y. Wang, Effect of structural phases on mechanical properties of molybdenum disulfide, ACS Omega 5(11), 5994 (2020)

    Article  Google Scholar 

  21. J. W. Jiang and Y. P. Zhou, Parameterization of Stillinger-Weber potential for two-dimensional atomic crystals, IntechOpen, 2017

  22. J. W. Jiang, Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study, Acta Mechanica Solida Sinica 32(1), 17 (2019)

    Article  Google Scholar 

  23. G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  25. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  27. J. Klimes and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137(12), 120901 (2012)

    Article  ADS  Google Scholar 

  28. Y. Cho, W. J. Cho, I. S. Youn, G. Lee, N. J. Singh, and K. S. Kim, Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems, Acc. Chem. Res. 47(11), 3321 (2014)

    Article  Google Scholar 

  29. V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)

    Article  Google Scholar 

  30. W. Cui, S. Xu, B. Yan, Z. Guo, Q. Xu, B. G. Sumpter, J. Huang, S. Yin, H. Zhao, and Y. Wang, Triphasic 2D materials by vertically stacking laterally heterostructured 2H-/1T′-MoS2 on graphene for enhanced photoresponse, Adv. Electron. Mater. 3(7), 1700024 (2017)

    Article  Google Scholar 

  31. N. Wakabayashi, H. Smith, and R. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)

    Article  ADS  Google Scholar 

  32. J. Pei, J. Yang, T. Yildirim, H. Zhang, and Y. Lu, Many-body complexes in 2D semiconductors, Adv. Mater. 31(2), 1706945 (2019)

    Article  Google Scholar 

  33. A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)

    Article  ADS  Google Scholar 

  34. B. Schönfeld, J. Huang, and S. Moss, Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2, Acta Crystallogr. B 39(4), 404 (1983)

    Article  Google Scholar 

  35. R. G. Dickinson and L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc. 45(6), 1466 (1923)

    Article  Google Scholar 

  36. F. P. Novais Antunes, V. S. Vaiss, S. R. Tavares, R. B. Capaz, and A. A. Leitão, Van der Waals interactions and the properties of graphite and 2H-, 3R- and 1T-MoS2: A comparative study, Comput. Mater. Sci. 152, 146 (2018)

    Article  Google Scholar 

  37. Q. Tang and D. E. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization, Chem. Mater. 27(10), 3743 (2015)

    Article  Google Scholar 

  38. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  39. Y. Wang, H. M. Zhang, P. R. Liu, X. D. Yao, and H. J. Zhao, Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction, RSC Advances 3(23), 8777 (2013)

    Article  ADS  Google Scholar 

  40. P. Johari and V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains, ACS Nano 6(6), 5449 (2012)

    Article  Google Scholar 

  41. Y. Liu, V. Wang, M. Xia, and S. Zhang, First-principles study on structural, thermal, mechanical and dynamic sta-bility of T′-MoS2, J. Phys.: Condens. Matter 29(9), 095702 (2017)

    ADS  Google Scholar 

  42. B. Pal, A. Singh, S. G, P. Mahale, A. Kumar, S. Thirupathaiah, H. Sezen, M. Amati, L. Gregoratti, U. V. Waghmare, and D. D. Sarma, Chemically exfoliated MoS2 layers: Spectroscopic evidence for the semiconducting nature of the dominant trigonal metastable phase, Phys. Rev. B 96(19), 195426 (2017)

    Article  ADS  Google Scholar 

  43. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1954

  44. K. A. N. Duerloo, M. T. Ong, and E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Vei Wang for his insightful suggestions. This research was undertaken on the supercomputers in National Computational Infrastructure (NCI) in Canberra, Australia, which is supported by the Australian Commonwealth Government, and Pawsey Supercomputing Centre in Perth with the funding from the Australian government and the Government of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Supplemental Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imani Yengejeh, S., Wen, W. & Wang, Y. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. 16, 13502 (2021). https://doi.org/10.1007/s11467-020-1001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1001-5

Keywords

Navigation