Skip to main content
Log in

Synthesis and structure of two-dimensional transition-metal dichalcogenides

  • 2D layered transition-metal dichalcogenides
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013).

    Google Scholar 

  2. X. Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 42, 1934 (2013).

    Google Scholar 

  3. R. Ganatra, Q. Zhang, ACS Nano 8, 4074 (2014).

    Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011).

  5. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    Google Scholar 

  6. S. Bertolazzi, D. Krasnozhon, A. Kis, ACS Nano 7, 3246 (2013).

    Google Scholar 

  7. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12, 4674 (2012).

    Google Scholar 

  8. Q. Ji, Y. Zhang, Y. Zhang, Z. Liu, Chem. Soc. Rev., published online September 26, 2014, doi: 10.1039/C4CS00258J.

  9. Y. Shi, H. Li, L.-J. Li, Chem. Soc. Rev., published online October 20, 2014, doi: 10.1039/C4CS00256C.

  10. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Energy Environ. Sci. 7, 209 (2014).

    Google Scholar 

  11. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Google Scholar 

  12. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, M. Chhowalla, ACS Nano 6, 7311 (2012).

    Google Scholar 

  13. X. Qian, J. Liu, L. Fu, J. Li, Science 346, 1344 (2014).

    Google Scholar 

  14. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010).

    Google Scholar 

  15. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010).

    Google Scholar 

  16. T.H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D.J. Perello, M.O. Cichocka, H.M. Oh, S.H. Chae, H.Y. Jeong, F. Yao, L.-J. Li, Y.H. Lee, ACS Nano 8, 11401 (2014).

    Google Scholar 

  17. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.-C. Idrobo, Nano Lett. 13, 2615 (2013).

    Google Scholar 

  18. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Nat. Mater. 12, 554 (2013).

    Google Scholar 

  19. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.-C. Idrobo, P.M. Ajayan, J. Lou, Nat. Mater. 12, 754 (2013).

    Google Scholar 

  20. Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, M. Kan, J. Feng, Q. Sun, Z. Liu, Nano Lett. 13, 3870 (2013).

    Google Scholar 

  21. X.-Q. Zhang, C.-H. Lin, Y.-W. Tseng, K.-H. Huang, Y.-H. Lee, Nano Lett. 15, 410 (2014).

    Google Scholar 

  22. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Nat. Mater. 13, 1135 (2014).

    Google Scholar 

  23. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan, Nat. Nanotechnol. 9, 1024 (2014).

    Google Scholar 

  24. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  25. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Google Scholar 

  26. H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 47, 1067 (2014).

    Google Scholar 

  27. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang, Small 9, 1974 (2013).

    Google Scholar 

  28. H. Li, G. Lu, Z. Yin, Q. He, H. Li, Q. Zhang, H. Zhang, Small 8, 682 (2012).

    Google Scholar 

  29. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011).

    Google Scholar 

  30. K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, H.-L. Zhang, Angew. Chem. Int. Ed. 50, 10839 (2011).

    Google Scholar 

  31. R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, G. Moriarty, J. Chen, J. Wang, A.I. Minett, V. Nicolosi, J.N. Coleman, Adv. Mater. 23, 3944 (2011).

    Google Scholar 

  32. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Science 340, 1420 (2013).

    Google Scholar 

  33. P. Joensen, R.F. Frindt, S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Google Scholar 

  34. M.B. Dines, Mater. Res. Bull. 10, 287 (1975).

    Google Scholar 

  35. E. Benavente, M.A. Santa Ana, F. Mendizábal, G. González, Coord. Chem. Rev. 224, 87 (2002).

    Google Scholar 

  36. H.S.S. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010).

    Google Scholar 

  37. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12, 850 (2013).

    Google Scholar 

  38. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Nat. Mater. 13, 1128 (2014).

    Google Scholar 

  39. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Angew. Chem. Int. Ed. 50, 11093 (2011).

    Google Scholar 

  40. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H.H. Hng, H. Zhang, Angew. Chem. Int. Ed. 51, 9052 (2012).

    Google Scholar 

  41. Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Energy Environ. Sci. 7, 797 (2014).

    Google Scholar 

  42. K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, Nano Lett. 12, 1538 (2012).

    Google Scholar 

  43. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mater. 24, 2320 (2012).

    Google Scholar 

  44. X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Nano Lett. 14, 464 (2014).

    Google Scholar 

  45. S.M. Eichfeld, L. Hossain, Y.-C. Lin, A.F. Piasecki, B. Kupp, A.G. Birdwell, R.A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R.M. Wallace, M.J. Kim, T.S. Mayer, J.M. Redwing, J.A. Robinson, ACS Nano 9, 2080 (2015).

    Google Scholar 

  46. S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano 8, 2880 (2014).

    Google Scholar 

  47. C.-H. Chen, C.-L. Wu, J. Pu, M.-H. Chiu, P. Kumar, T. Takenobu, L.-J. Li, 2D Mater. 1, 034001 (2014).

    Google Scholar 

  48. Y. Shi, J.-K. Huang, L. Jin, Y.-T. Hsu, S.F. Yu, L.-J. Li, H.Y. Yang, Sci. Rep. 3, 1839 (2013).

    Google Scholar 

  49. Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.-J. Li, J. Kong, ACS Nano 4, 2689 (2010).

    Google Scholar 

  50. S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 13, 5944 (2013).

    Google Scholar 

  51. K. Dolui, I. Rungger, C. Das Pemmaraju, S. Sanvito, Phys. Rev. B: Condens. Matter 88, 075420 (2013).

    Google Scholar 

  52. J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H.J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J. Wu, Nano Lett. 14, 6976 (2014).

    Google Scholar 

  53. H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan, J. Am. Chem. Soc. 136, 3756 (2014).

    Google Scholar 

  54. Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A.L. Elías, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, P.M. Ajayan, Nano Lett. 14, 442 (2013).

    Google Scholar 

  55. S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, J.-H. He, L.-J. Li, Front. Energy Res. 2, 27 (2014).

    Google Scholar 

  56. B. Li, L. Huang, M. Zhong, N. Huo, Y. Li, S. Yang, C. Fan, J. Yang, W. Hu, Z. Wei, J. Li, ACS Nano 9, 1257 (2015).

    Google Scholar 

  57. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013).

    Google Scholar 

  58. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, K.S. Novoselov, Science 340, 1311 (2013).

    Google Scholar 

  59. M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, J.-H. He, ACS Nano 8, 8317 (2014).

    Google Scholar 

  60. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012).

    Google Scholar 

  61. P.T.K. Loan, W. Zhang, C.-T. Lin, K.-H. Wei, L.-J. Li, C.-H. Chen, Adv. Mater. 26, 4838 (2014).

    Google Scholar 

  62. Y.-H. Chang, F.-Y. Wu, T.-Y. Chen, C.-L. Hsu, C.-H. Chen, F. Wiryo, K.-H. Wei, C.-Y. Chiang, L.-J. Li, Small 10, 895 (2014).

    Google Scholar 

  63. A.J. Smith, Y.-H. Chang, K. Raidongia, T.-Y. Chen, L.-J. Li, J. Huang, Adv. Energy Mater. 4, 1400398 (2014).

    Google Scholar 

  64. Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.-L. Hsu, L.-J. Li, Y.-C. Lu, H.Y. Yang, Sci. Rep. 3, 2169 (2013).

    Google Scholar 

  65. X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9, 3433 (2013).

    Google Scholar 

  66. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 102, 012111 (2013).

    Google Scholar 

  67. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Appl. Phys. Lett. 103, 053513 (2013).

    Google Scholar 

  68. H. Terrones, F. López-Urías, M. Terrones, Sci. Rep. 3, 1549 (2013).

    Google Scholar 

  69. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J.S. Kang, H.A. Bechtel, S.B. Desai, F. Kronast, A.A. Unal, G. Conti, C. Conlon, G.K. Palsson, M.C. Martin, A.M. Minor, C.S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey, Proc. Natl. Acad. Sci. U.S.A. 111, 6198 (2014).

    Google Scholar 

  70. M.-H. Chiu, M.-Y. Li, W. Zhang, W.-T. Hsu, W.-H. Chang, M. Terrones, H. Terrones, L.-J. Li, ACS Nano 8, 9649 (2014).

    Google Scholar 

  71. C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, P. Kim, Nat. Nanotechnol. 9, 676 (2014).

    Google Scholar 

  72. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, J. Wu, Nano Lett. 14, 3185 (2014).

    Google Scholar 

  73. P. Rivera, J.R. Schaibley, A.M. Jones, J.S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, X. Xu, Nat. Commun. 6, 6242 (2015).

    Google Scholar 

  74. C. Huang, S. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, Nat. Mater. 13, 1096 (2014).

    Google Scholar 

  75. Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M.S. Dresselhaus, L.-J. Li, J. Kong, Nano Lett. 10, 4134 (2010).

    Google Scholar 

  76. K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012).

    Google Scholar 

  77. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, D.-Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, J. Hone, ACS Nano 7, 7931 (2013).

    Google Scholar 

  78. Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.-J. Li, J.-C. Idrobo, J. Kong, Nano Lett. 12, 2784 (2012).

    Google Scholar 

  79. Y. Ma, Y. Dai, M. Guo, C. Niu, B. Huang, Nanoscale 3, 3883 (2011).

    Google Scholar 

  80. Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C.H. Lee, C. Sun, L. Calderin, P.N. Browning, M.S. Bresnehan, M.J. Kim, T.S. Mayer, M. Terrones, J.A. Robinson, ACS Nano 8, 3715 (2014).

    Google Scholar 

  81. Y.-C. Lin, C.-Y.S. Chang, R.K. Ghosh, J. Li, H. Zhu, R. Addou, B. Diaconescu, T. Ohta, X. Peng, N. Lu, M.J. Kim, J.T. Robinson, R.M. Wallace, T.S. Mayer, S. Datta, L.-J. Li, J.A. Robinson, Nano Lett. 14, 6936 (2014).

    Google Scholar 

  82. M.-Y. Lin, C.-E. Chang, C.-H. Wang, C.-F. Su, C. Chen, S.-C. Lee, S.-Y. Lin, Appl. Phys. Lett. 105, 073501 (2014).

    Google Scholar 

  83. M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, R. Kitaura, ACS Nano 8, 8273 (2014).

    Google Scholar 

  84. J. Zheng, H. Zhang, S. Dong, Y. Liu, C.T. Nai, H.S. Shin, H.Y. Jeong, B. Liu, K.P. Loh, Nat. Commun. 5, 2995 (2014).

    Google Scholar 

Download references

Acknowledgements

L.J.L. and Y.S. thank support from King Abdullah University of Science and Technology and the USA AFOSR BRI grant. W.H.C. and L.J.L. acknowledge support from the Center for Interdisciplinary Science of NCTU, Taiwan Consortium of Emergent Crystalline Materials (TCECM) and Ministry of Science and Technology, Taiwan (Grant No.: NSC102–2119-M-009 -002 -MY3). H.S.S. thanks support from the NRF grant (No. 20140610011) and a grant (CASE-2014M3A6A5060939) from the Center for Advanced Soft Electronics under the Global Frontier Research Program through the National Research Foundation funded by the Ministry of Science, ICT, and Future Planning, Korea. This work was supported by MOE under AcRF Tier 2 (ARC 26/13, No. MOE2013-T2–1-034), AcRF Tier 1 (RG 61/12, RGT18/13, and RG5/13), and Start-Up Grant (M4080865.070.706022), and Singapore Millennium Foundation in Singapore. Research was also conducted by NTU-HUJ-BGU Nanomaterials for the Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise, which is supported by the National Research Foundation, Prime Minister’s Office, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumeng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, H., Chang, WH. et al. Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin 40, 566–576 (2015). https://doi.org/10.1557/mrs.2015.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.121

Navigation