Skip to main content
Log in

Applications of the conformal transformation method in studies of composed superconducting systems

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A framework for analytical studies of superconducting systems is presented and illustrated. The formalism, based on the conformal transformation of momentum space, allows one to study the effects of both the dispersion relation and the structure of the pairing interaction in two-dimensional anisotropic high-T c superconductors. In this method, the number of employed degrees of freedom coincides with the dimension of the momentum space, which is different compared to that in the standard Van Hove scenario with a single degree of freedom. A new function, the kernel of the density of states, is defined and its relation to the standard density of states is explained. The versatility of the method is illustrated by analyzing coexistence and competition between spin-singlet and spin-triplet order parameters in superconducting systems with a tight-binding-type dispersion relation and an anisotropic pairing potential. Phase diagrams of stable superconducting states in the coordinates η (the ratio of hopping parameters) and n (the carrier concentration) are presented and discussed. Moreover, the role of attractive and repulsive on-site interactions for the stability of the s-wave order parameter is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Monthoux and G. G. Lonzarich, p-wave and d-wave superconductivity in quasi-two-dimensional metals, Phys. Rev. B 59(22), 14598 (1999)

    Article  ADS  Google Scholar 

  2. P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity in quasi-two and three dimensions, Phys. Rev. B 63(5), 054529 (2001)

    Article  ADS  Google Scholar 

  3. P. Monthoux and G. G. Lonzarich, Magnetically mediated superconductivity: Crossover from cubic to tetragonal lat-tice, Phys. Rev. B 66(22), 224504 (2002)

    Article  ADS  Google Scholar 

  4. A. Nazarenko and E. Dagotto, Possible phononic mecha-nism for d x2y2 superconductivity in the presence of short-range antiferromagnetic correlations, Phys. Rev. B 53(6), R2987 (1996)

    Article  ADS  Google Scholar 

  5. D. Y. Xing, M. Liu, Y. G. Wang, and J. Dong, Analytic ap-proach to the antiferromagnetic van Hove singularity model for high-T c superconductors, Phys. Rev. B 60(13), 9775 (1999)

    Article  ADS  Google Scholar 

  6. M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003)

    Article  ADS  Google Scholar 

  7. R. Gonczarek, M. G ladysiewicz-Kudrawiec, The Van Hove Scenario in high-Tc superconductivity, Wroclow University of Technology Press, Wroclaw, 2004 (in Polish)

    Google Scholar 

  8. R. Gonczarek and M. Krzyzosiak, Conformal transforma-tion method and symmetry aspects of the group C 4v in a model of high-T c superconductors with anisotropic gap, Physica C 426(431), 278 (2005)

    Article  ADS  Google Scholar 

  9. R. Gonczarek, L. Jacak, M. Krzyzosiak, and A. Gonczarek, Competition mechanism between singlet and triplet super-conductivity in the tight-binding model with anisotropic attractive potential, Eur. Phys. J. B 49(2), 171 (2006)

    Article  ADS  Google Scholar 

  10. R. Gonczarek, M. Krzyzosiak, L. Jacak, and A. Gonczarek, Coexistence of spin-singlet s-and d-wave and spin-triplet p-wave order parameters in anisotropic superconductors, phys. stat. sol. (b) 244, 3559 (2007)

    Article  ADS  Google Scholar 

  11. R. Gonczarek, M. Krzyzosiak, and A. Gonczarek, Is-lands of stability of the d-wave order parameter in s-wave anisotropic superconductors, Eur. Phys. J. B 61(3), 299 (2008)

    Article  ADS  MATH  Google Scholar 

  12. M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Ja-cak, Interplay between spin-singlet and spin-triplet order parameters in a model of an anisotropic superconductor with cuprate planes, J. Phys. Conf. Ser. 152, 012057 (2009)

    Article  ADS  Google Scholar 

  13. R. Szczȩsniak and A. P. Durajski, The characterization of high-pressure superconducting state in Si2H6 compound: The strong-coupling description, J. Phys. Chem. Solids 74(4), 641 (2013)

    Article  ADS  Google Scholar 

  14. R. Szczȩsniak, SDW antiferromagnetic phase in the two-dimensional Hubbard model: Eliashberg approach, Phys. Lett. A 373(4), 473 (2009)

    Article  ADS  Google Scholar 

  15. W. Kohn and J. M. Luttinger, New mechanism for super-conductivity, Phys. Rev. Lett. 15(12), 524 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. A. Krotov, D. H. Lee, and A. V. Balatsky, Superconduc-tivity of a metallic stripe embedded in an antiferromagnet, Phys. Rev. B 56(13), 8367 (1999)

    Article  ADS  Google Scholar 

  17. M. Granath and H. Johannesson, One-dimensional electron liquid in an antiferromagnetic environment: Spin gap from magnetic correlations, Phys. Rev. Lett. 83(1), 199 (1999)

    Article  ADS  Google Scholar 

  18. A. P. Durajski and R. Szczȩsniak, Characterization of phonon-mediated superconductivity in lithium doping borocarbide, Solid State Sci. 42, 20 (2015)

    Article  ADS  Google Scholar 

  19. A. P. Durajski, Phonon-mediated superconductivity in compressed NbH4 compound, Eur. Phys. J. B 87(9), 210 (2014)

    Article  ADS  Google Scholar 

  20. P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)

    Article  ADS  Google Scholar 

  21. P. W. Anderson, The Theory of High-Tc Superconductivity in the Cuprates, Princeton University Press, 1997

    Google Scholar 

  22. L. D. Landau, The Theory of a Fermi Liquid, Zh. Eksp. Teor. Fiz. 80, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)]

    Google Scholar 

  23. L. D. Landau, Oscillations in a Fermi liquid, Zh. Eksp. Teor. Fiz. 32, 59 (1957) [Sov. Phys. JETP 5, 101(1957)]

    MATH  Google Scholar 

  24. M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Conformal Transformation Method in Studies of High-Tc Superconductors — Beyond the Van Hove Scenario, in: Su-perconductivity and Superconducting Wires, edited by D. Matteri and L. Futino, Nova Science Publishers, 2010, Ch. 5

    Google Scholar 

  25. R. Gonczarek, M. Krzyzosiak, and M. Mulak, Valuation of characteristic ratios for high-T c superconductors with anisotropic gap in the conformal transformation method, J. Phys. A 37(18), 4899 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. Gonczarek, M. Gladysiewicz, and M. Mulak, On pos-sible formalism of anisotropic Fermi liquid and BCS-type superconductivity, Int. J. Mod. Phys. B 15(05), 491 (2001)

    Article  ADS  Google Scholar 

  27. F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B 37(7), 3759 (1988)

    Article  ADS  Google Scholar 

  28. R. Micnas, J. Ranniger, and S. Robaszkiewicz, Supercon-ductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys. 62(1), 113 (1990)

    Article  ADS  Google Scholar 

  29. E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Band-structure trend in hole-doped cuprates and correlation with T rmcmax, Phys. Rev. Lett. 87(4), 047003 (2001)

    Article  ADS  Google Scholar 

  30. O. K. Andersen, A. I. Liechtenstein, O. Jepsen, and F. Paulsen, LDA energy bands, low-energy hamiltonians, t', t'', t(k), and J, J. Phys. Chem. Solids 56(12), 1573 (1995)

    Article  ADS  Google Scholar 

  31. O. K. Andersen, S. Y. Savrasov, O. Jepsen, and A. I. Liecht-enstein, Out-of-plane instability and electron-phonon con-tribution to s- and d-wave pairing in high-temperature su-perconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model J. Low Temp. Phys. 105(3–4), 285 (1996)

    Article  ADS  Google Scholar 

  32. R. Gonczarek, M. G. ladysiewicz, and M. Mulak, Equi-librium states and thermodynamical properties of d-wave paired HTSC in the tightbinding model, phys. stat. sol. (b) 233, 351 (2002)

    Article  ADS  Google Scholar 

  33. M. M. Maska, M. Mierzejewski, B. Andrzejewski, M. L. Foo, R. J. Cava, and T. Klimczuk, Possible singlet-to-triplet pairing transition in NaxCoO2-y H2O, Phys. Rev. B 70, 144516 (2004)

    Article  ADS  Google Scholar 

  34. J. Bouvier and J. Bok, The Gap Symmetry and Fluc-tuations in High T c Superconductors, Eds. J. Bok, G. Deutscher, D. Pavuna, and S. Wolf, New York: Plenum Press, 1998, p. 37

  35. R. S. Markiewicz, A survey of the Van Hove scenario for high-T c superconductivity with special emphasis on pseudo-gaps and striped phases, J. Phys. Chem. Solids 58(8), 1179 (1997)

    Article  ADS  Google Scholar 

  36. H. Q. Lin and J. E. Hirsch, Two-dimensional Hubbard model with nearest-and next-nearest-neighbor hopping, Phys. Rev. B 35(7), 3359 (1987)

    Article  ADS  Google Scholar 

  37. M. Sigist and K. Ueda, Phenomenological theory of uncon-ventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)

    Article  ADS  Google Scholar 

  38. H. Ghosh, Higher anisotropic d-wave symmetry in cuprate superconductors, J. Phys.: Condens. Matter 11(30), L371 (1999)

    ADS  Google Scholar 

  39. Q. Yuan and P. Thalmeier, BCS theory for s + g-wave su-perconductivity in borocarbides Y(Lu)Ni2B2C, Phys. Rev. B 68(17), 174501 (2003)

    Article  ADS  Google Scholar 

  40. H. Shimahara and S. Hata, Superconductivity in a ferro-magnetic layered compound, Phys. Rev. B 62(21), 14541 (2000)

    Article  ADS  Google Scholar 

  41. J. González, Microscopic description of d-wave supercon-ductivity by Van Hove nesting in the Hubbard model, Phys. Rev. B 63(2), 024502 (2000)

    Article  Google Scholar 

  42. E. Ya. Sherman, Raman vertex in cuprates: Role of the extended Van Hove singularity, Phys. Rev. B 58(21), 14187 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Gonczarek and M. Krzyzosiak, On possibility of realiza-tion of d- or p-wave symmetry states in anisotropic super-conductors, Acta Phys. Pol. A 109(4–5), 493 (2006)

    Article  Google Scholar 

  44. R. Gonczarek and M. Krzyzosiak, On a model of supercon-ductivity realized in the metallic phase of strongly corre-lated electrons revealing a first-order phase transition, Int. J. Mod. Phys. B 17(30), 5683 (2003)

    Article  ADS  Google Scholar 

  45. R. Gonczarek and M. Krzyzosiak, Critical parameters in the superconducting singular Fermi liquid model, Physica C 445–448, 158 (2006)

    Article  MATH  Google Scholar 

  46. A. P. Durajski, The anisotropic evolution of the energy gap in Bi2212 superconductor, Front. Phys. 11, 117408 (2016)

    Article  Google Scholar 

  47. C. C. Tsuei, D. M. Newns, C. C. Chi, and P. C. Pattnaik, Anomalous isotope effect and Van Hove singularity in su-perconducting Cu oxides, Phys. Rev. Lett. 65(21), 2724 (1990)

    Article  ADS  Google Scholar 

  48. C. C. Tsuei, D. M. Newns, C. C. Chi, and P. C. Pattnaik, Tsuei et al. reply, Phys. Rev. Lett. 68(7), 1091 (1992)

    Article  ADS  Google Scholar 

  49. E. Dagotto, A. Nazarenko, and M. Boninsegni, Flat quasi-particle dispersion in the 2D t–J model, Phys. Rev. Lett. 73(5), 728 (1994)

    Article  ADS  Google Scholar 

  50. E. Dagotto, Correlated electrons in high-temperature su-perconductors, Rev. Mod. Phys. 66(3), 763 (1994)

    Article  ADS  Google Scholar 

  51. E. Dagotto, A. Nazarenko, and A. Moreo, Antiferromag-netic and van Hove scenarios for the cuprates: Taking the best of both worlds, Phys. Rev. Lett. 74(2), 310 (1995)

    Article  ADS  Google Scholar 

  52. J. M. Getino, M. de Llano, and H. Rubio, Properties of the gap energy in the van Hove scenario of high-temperature superconductivity, Phys. Rev. B 48(1), 597 (1993)

    Article  ADS  Google Scholar 

  53. R. S. Markiewicz, Van Hove excitons and high-Tc super-conductivity (VI): Properties of the exitations, Physica C 168(1–2), 195 (1990)

    Article  ADS  Google Scholar 

  54. R. S. Markiewicz, Van Hove excitons and high-Tc supercon-ductivity (VI): Gap equation with pair breaking, Physica C 183, 303 (1991)

    Article  ADS  Google Scholar 

  55. R. S. Markiewicz, C. Kusko, and V. Kidambi, Pinned Balseiro-Falicov model of tunneling and photoemission in the cuprates, Phys. Rev. B 60(1), 627 (1999)

    Article  ADS  Google Scholar 

  56. H. H. Fertwell, A. Kaminski, J. Mesot, J. C. Campuzano, M. R. Norman, M. Randeria, T. Sato, R. Gatt, T. Taka-hashi and K. Kadowaki, Fermi surface of Bi2Sr2CaCu2O8, Phys. Rev. Lett. 84(19), 4449 (2000)

    Article  ADS  Google Scholar 

  57. S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Dürr, M. Knupfer, J. Fink, G. Yang, S. Abell, and H. Berger, Joys and pitfalls of Fermi surface mapping in Bi2Sr2CaCu2O8+δ using angle resolved photoemission, Phys. Rev. Lett. 84(19), 4453 (2000)

    Article  ADS  Google Scholar 

  58. K. Kuboki, Effect of band structure on the symmetry of su-perconducting states, J. Phys. Soc. Jpn. 70(9), 2698 (2001)

    Article  ADS  Google Scholar 

  59. R. Gonczarek and M. Krzyzosiak, Some universal relations between the gap and thermodynamic functions plausible for various models of superconductors, phys. stat. sol. (b) 238, 29 (2003)

    Article  ADS  Google Scholar 

  60. R. Gonczarek and M. Mulak, Enhancement of critical tem-perature of superconductors implied by the local fluctuation of EDOS, Phys. Lett. A 251(4), 262 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mateusz Krzyzosiak, Ryszard Gonczarek or Adam Gonczarek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzyzosiak, M., Gonczarek, R., Gonczarek, A. et al. Applications of the conformal transformation method in studies of composed superconducting systems. Front. Phys. 11, 117407 (2016). https://doi.org/10.1007/s11467-016-0579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0579-0

Keywords

PACS numbers

Navigation