Skip to main content
Log in

Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong Coulomb repulsion is found to account systematically for the major features of high-temperature superconductivity, with microscopic details of the parent compounds entering only parametrically. This provides a systematic procedure to separate essential from peripheral, suggesting that many features exhibited by the high-Tc data set are of interest in their own right but are not central to the superconducting mechanism. More generally, we propose that the surprisingly broad range of conventional and unconventional superconducting and superfluid behavior observed across many fields of physics results from the systematic appearance of similar algebraic structures for the emergent effective Hamiltonians, even though the microscopic Hamiltonians of the corresponding parent states may differ radically from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. G. Bednorz and K. A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64(2), 189 (1986)

    ADS  Google Scholar 

  2. See: D. A. Bonn, Are high-temperature superconductors exotic? Nat. Phys. 2, 159 (2006); M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003) (and Refs. therein)

    Google Scholar 

  3. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-based layered superconductor LaO1−xFxFeAs (x = 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)

    Google Scholar 

  4. Y. Sun, M. W. Guidry, and C. L. Wu, A new family of high Tc compounds—Stepping stones toward understanding unconventional superconductivity, Chin. Sci. Bull. 53, 1617 (2009)

    Google Scholar 

  5. J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Superconductivity in the iron selenide KxFe2Se2, Phys. Rev. B 82(18), 180520 (2010)

    ADS  Google Scholar 

  6. D. C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys. 59(6), 803 (2010)

    ADS  Google Scholar 

  7. J. Paglione and R. L. Greene, High-temperature superconductivity in iron-based materials, Nat. Phys. 6(9), 645 (2010)

    Google Scholar 

  8. D. Mou, L. Zhao, and X. Zhou, Structural, magnetic and electronic properties of the iron-chalcogenide AxFe2−ySe2 (A=K, Cs, Rb, and Tl, etc.) superconductors, Front. Phys. 6(4), 410 (2011)

    Google Scholar 

  9. H. Oh, J. Moon, D. Shin, C. Moon, and H. J. Choi, Brief review on iron-based superconductors: Are there clues for unconventional superconductivity? Progress in Superconductivity 13, 65 (2011)

    Google Scholar 

  10. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108(5), 1175 (1957)

    MathSciNet  MATH  ADS  Google Scholar 

  11. L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104(4), 1189 (1956)

    MATH  ADS  Google Scholar 

  12. For example, see M. R. Norman, The challenge of unconventional superconductivity, Science 332(6026), 196 (2011) (and references cited there)

    ADS  Google Scholar 

  13. D. Jérome, Organic superconductors: When correlations and magnetism walk in, arXiv: 1201.5796 (2012)

    Google Scholar 

  14. See, for example, P. Ring, and P. Schuck, The Nuclear Many-Body Problem, Springer-Verlag, 1980

    Google Scholar 

  15. D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, Superfluid Neutrons in the core of the neutron star in cassiopeia A, arXiv: 1110.5116 (2011)

    Google Scholar 

  16. T. Noda, M. Hashimoto, N. Yasutake, T. Maruyama, T. Tatsumi, and M. Fujimoto, Cooling of compact stars with color superconducting phase in quark hadron mixed phase, Astrophys. J. 765(1), 1 (2012)

    ADS  Google Scholar 

  17. M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80(4), 1455 (2008)

    ADS  Google Scholar 

  18. C. L. Wu, D. H. Feng, and M. W. Guidry, The fermion dynamical symmetry model, Adv. Nucl. Phys. 21, 227 (1994)

    Google Scholar 

  19. F. Iachello and A. Arima, The Interacting Boson Model, Cambridge University Press, Cambridge, 1987

    Google Scholar 

  20. R. Bijker, F. Iachello, and A. Leviatan, Algebraic models of hadron structure (I): Nonstrange baryons, Ann. Phys. 236(1), 69 (1994)

    ADS  Google Scholar 

  21. F. Iachello and R. D. Levine, Algebraic Theory of Molecules, Oxford University Press, Oxford, 1995

    Google Scholar 

  22. F. Iachello and P. Truini, Algebraic model of anharmonic polymer chains, Ann. Phys. 276(1), 120 (1999)

    MathSciNet  MATH  ADS  Google Scholar 

  23. P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)

    MathSciNet  ADS  Google Scholar 

  24. R. J. Glauber, Photon correlations, Phys. Rev. Lett. 10(3), 277 (1963)

    MathSciNet  Google Scholar 

  25. For a review, see, Ref. [6] and P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys. 74, 124508 (2011)

    ADS  Google Scholar 

  26. T. Timusk and B. Statt, The pseudogap in hightemperature superconductors: An experimental survey, Rep. Prog. Phys. 62(1), 61 (1999)

    ADS  Google Scholar 

  27. M. Norman, D. Pines, and C. Kollin, The pseudogap: Friend or foe of high Tc? Adv. Phys. 54(8), 715 (2005)

    ADS  Google Scholar 

  28. G. Sheet, M. Mehta, D. A. Dikin, S. Lee, C. W. Bark, J. Jiang, J. D. Weiss, E. E. Hellstrom, M. S. Rzchowski, C. B. Eom, and V. Chandrasekhar, Phaseincoherent superconducting pairs in the normal state of Ba(Fe1−xCox)2As2, Phys. Rev. Lett. 105(16), 167003 (2010)

    ADS  Google Scholar 

  29. T. Mertelj, V. V. Kabanov, C. Gadermaier, N. D. Zhigadlo, S. Katrych, J. Karpinski, and D. Mihailovic, Distinct pseudogap and quasiparticle relaxation dynamics in the superconducting state of nearly optimally doped Sm-FeAsO0.8F0.2 single crystals, Phys. Rev. Lett. 102(11), 117002 (2009)

    ADS  Google Scholar 

  30. K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, 19F NMR investigation of the iron pnictide superconductor LaFeAsO0.89F0.11, Phys. Rev. B 78, 100501(R) (2008)

    ADS  Google Scholar 

  31. T. Sato, K. Nakayama, Y. Sekiba, T. Arakane, K. Terashima, S. Souma, T. Takahashi, Y. Kamihara, M. Hirano, and H. Hosono, Doping dependence of pseudogap in LaFeAsO1−xFx, J. Phys. Soc. Jpn. C 77 (Suppl.), 65 (2008)

    ADS  Google Scholar 

  32. F. Ning, K. Ahilan, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, 59Co and 75As NMR investigation of electron-doped high Tc superconductor BaFe1.8Co0.2As2 (Tc = 22 K), J. Phys. Soc. Jpn. 77(10), 103705 (2008)

    ADS  Google Scholar 

  33. S. M. Hayden, H. A. Mook, P. Dai, T. G. Perring, and F. Doğan, The structure of the high-energy spin excitations in a high-transition-temperature superconductor, Nature 429 (6991), 531 (2004)

    ADS  Google Scholar 

  34. J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, Quantum magnetic excitations from stripes in copper oxide superconductors, Nature 429(6991), 534 (2004)

    ADS  Google Scholar 

  35. J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295 (5554), 466 (2002)

    ADS  Google Scholar 

  36. M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, Science 303 (5666), 1995 (2004)

    ADS  Google Scholar 

  37. T. Hanaguri, C. Lupien, Y. Kohsaka, D. H. Lee, M. Azuma, M. Takano, H. Takagi, and J. C. Davis, A “checkerboard” electronic crystal state in lightly holedoped Ca2−xNaxCuO2Cl2, Nature 430 (7003), 1001 (2004)

    ADS  Google Scholar 

  38. K. McElroy, J. Lee, J. A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, and J. C. Davis, Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ, Science 309(5737), 1048 (2005)

    ADS  Google Scholar 

  39. V. J. Emery and S. A. Kivelson, Importance of phase fluctuations in superconductors with small superfluid density, Nature 374(6521), 434(1995)

    ADS  Google Scholar 

  40. J. L. Tallon and J. W. Loram, The doping dependence of T*-What is the real high-Tc phase diagram? Physica C349(1-2), 53 (2001)

    ADS  Google Scholar 

  41. P. W. Anderson, Spin-charge separation is the key to the high Tc cuprates, Physica C 341-348, 9 (2000)

    ADS  Google Scholar 

  42. D. Pines, Quantum protectorates in the cuprate superconductors, Physica C 341-348, 59 (2000)

    ADS  Google Scholar 

  43. R. B. Laughlin and D. Pines, The theory of everything, Proc. Natl. Acad. Sci. USA 97(1), 28(2000)

    MathSciNet  ADS  Google Scholar 

  44. A. Bohr and B. R. Mottelson, Nuclear Structure, Vols. I and II, W. A. Benjamin, 1969 and 1975

    Google Scholar 

  45. However the standard methodologies in the elementary particle physics case differ from the ones used here, partially because a relativistic quantum field theory is required there but non-relativistic fields are adequate for the present discussion. An accessible introduction to non-Abelian gauge fields may be found in Gauge Field Theories, An Introduction with Applications, Mike Guidry, Wiley, 1992.

  46. M. W. Guidry, L. A. Wu, Y. Sun, and C. L. Wu, SU(4) model of high-temperature superconductivity and antiferromagnetism, Phys. Rev. B 63(13), 134516 (2001)

    ADS  Google Scholar 

  47. M. W. Guidry, A fermion dynamical symmetry model of high-temperature superconductivity and antiferromagnetic order, Rev. Mex. Fís. 45(S2), 132 (1999)

    Google Scholar 

  48. L. A. Wu, M. W. Guidry, Y. Sun, and C. L. Wu, SO(5) as a critical dynamical symmetry in the SU(4) model of high-temperature superconductivity, Phys. Rev. B 67(1), 014515 (2003)

    ADS  Google Scholar 

  49. M. W. Guidry, Y. Sun, and C. L. Wu, Mott insulators, no-double-occupancy, and non-Abelian superconductivity, Phys. Rev. B 70(18), 184501 (2004)

    ADS  Google Scholar 

  50. Y. Sun, M. W. Guidry, and C. L. Wu, Temperaturedependent gap equations and their solutions in the SU(4) model of high-temperature superconductivity, Phys. Rev. B 73(13), 134519 (2006)

    ADS  Google Scholar 

  51. Y. Sun, M. W. Guidry, and C. L. Wu, Pairing Gaps, Pseudogaps, and Phase Diagrams for Cuprate Superconductors, Phys. Rev. B 75(13), 134511 (2007)

    ADS  Google Scholar 

  52. Y. Sun, M. W. Guidry, and C. L. Wu, k-dependent SU(4) model of high-temperature superconductivity and its coherent state solutions, Phys. Rev. B 78(17), 174524 (2008)

    ADS  Google Scholar 

  53. M. W. Guidry, Y. Sun, and C. L. Wu, Instabilities of doped Mott insulators and the properties of hightemperature superconductors, published in Nuclei and Mesoscopic Physics, p. 160, P. Danielewicz, P. Piecuch, and V. Zelevinsky (Eds.), AIP Conference Proceedings, 2008.

    Google Scholar 

  54. M. W. Guidry, Y. Sun, and C. L. Wu, A unified description of cuprate and iron arsenide superconductors, Front. Phys. China 4(4), 433 (2009)

    ADS  Google Scholar 

  55. M. W. Guidry, Y. Sun, and C. L. Wu, Strong anisotropy of cupratepseudogap correlations: Implications for Fermi arcs and Fermi pockets, New J. Phys. 11(12), 123023 (2009)

    ADS  Google Scholar 

  56. M. Guidry, Y. Sun, and C. L. Wu, Generalizing the Cooper pair instability to doped Mott insulators, Front. Phys. China 5(2), 171 (2010)

    ADS  Google Scholar 

  57. M. W. Guidry, Y. Sun, and C. L. Wu, Inhomogeneity, dynamical symmetry, and complexity in high-temperature superconductors: Reconciling a universal phase diagram with rich local disorder, Chin. Sci. Bull. 56(4-5), 367 (2011)

    Google Scholar 

  58. The particle-hole symmetry intrinsic to these models does not mean that hole-doped and electron-doped compounds are expected to behave in the same manner. Although the operators and basis states of the model are particle-hole symmetric, the interactions entering the effective Hamiltonian would not be expected to be the same for holedoped and particle-doped compounds. Thus, the physical properties of hole-doped and electron-doped compounds could differ substantially.

  59. We employ an isomorphism between the groups SU(4) and SO(6) to label irreducible representations using SO(6) quantum numbers. The representation structure and relationship of SU(4) and SO(6) is discussed in: J. N. Ginocchio, Ann. Phys. 126, 234 (1980)

  60. Groups generally may have more than one Casimir invariant. We shall use the term “Casimir”to refer loosely to the lowest-order such invariants (which are generally quadratic in the group generators). In the context of the present discussion, quadratic Casimirs are associated with 2-body interactions at the microscopic level. Higher-order Casimirs are then generally associated with 3-body and higher interactions. The restriction of our Hamiltonians to polynomials of order 2 in the Casimirs is then a physical restriction to consideration of only 1-body and 2-body interactions.

  61. W. M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys. 62(4), 867(1990)

    MathSciNet  ADS  Google Scholar 

  62. W. M. Zhang, C. L. Wu, D. H. Feng, J. N. Ginocchio, and M. W. Guidry, Geometrical structure and critical phenomena in the fermion dynamical symmetry model: Sp(6), Phys. Rev. C 38(3), 1475 (1988)

    MathSciNet  ADS  Google Scholar 

  63. W. M. Zhang, D. H. Feng, C. L. Wu, H. Wu, and J. N. Ginocchio, Symmetry constrained Hartree-Fock- Bogoliubov theory with applications to the fermion dynamical symmetry model, Nucl. Phys. A 505(1), 7 (1989)

    ADS  Google Scholar 

  64. W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical interpretation of SO(7): A critical dynamical symmetry, Phys. Rev. Lett. 59(18), 2032(1987)

    ADS  Google Scholar 

  65. W. M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical structure and critical phenomena in the fermion dynamical symmetry model: SO(8), Phys. Rev. C 37(3), 1281 (1988)

    ADS  Google Scholar 

  66. R. Gilmore, Geometry of symmetrized states, Ann. Phys. 74(2), 391 (1972)

    MathSciNet  ADS  Google Scholar 

  67. R. Gilmore, On the properties of coherent states, Rev. Mex. Fis. 23(1–2), 143 (1974)

    Google Scholar 

  68. A. M. Perelomov, Coherent states for arbitrary Lie group, Commun. Math. Phys. 26(3), 222 (1972)

    MathSciNet  MATH  ADS  Google Scholar 

  69. J. R. Klauder, Continuous-representation theory: Postulates of continuous-representation theory, J. Math. Phys. 4, 1055 (1963); Continuous‐representation theory (II): Postulates of continuous‐representation theory, J. Math. Phys. 4, 1058 (1963)

    MathSciNet  MATH  ADS  Google Scholar 

  70. Thus the most general SU(4) coherent state depends on eight real variables. The reduction of the coherent state parameters to only two in Eq. (28) follows from requiring time reversal symmetry and assuming conservation of spin projection Sz for the wave function.

  71. B. R. Judd, Operator Techniques in Atomic Spectroscopy, McGraw-Hill, 1963

    Google Scholar 

  72. The competition between dynamical symmetries governing the transition between spherical and deformed nuclei is discussed in §4.5 (in particular, §4.5.4) of Ref. [18].

  73. M. W. Guidry and Y. Sun, Superconductivity and superfluidity as universal emergent phenomena in diverse fermionic systems, Front. Phys. 10(4), 1 (2015)

    Google Scholar 

  74. M. W. Guidry, Universality of emergent states in diverse physical systems, AIP Conf. Proc. 1912, 020005 (2017)

    Google Scholar 

  75. L. A. Wu and M. W. Guidry, The ground state of monolayer graphene in a strong magnetic field, Sci. Rep. 6(1), 22423 (2016)

    ADS  Google Scholar 

  76. L. A. Wu, M. Murphy, and M. W. Guidry, SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene, Phys. Rev. B 95(11), 115117 (2017)

    ADS  Google Scholar 

  77. M. W. Guidry, SO(8) fermion dynamical symmetry and quantum hall states for graphene in a strong magnetic field, Fortschr. Phys. 65(6–8), 1600057 (2017)

    MathSciNet  MATH  Google Scholar 

  78. J. L. Tallon, J. W. Loram, J. R. Cooper, C. Panagopoulos, and C. Bernhard, Superfluid density in cuprate high- Tc superconductors: A new paradigm, Phys. Rev. B 68(18), 180501 (2003)

    ADS  Google Scholar 

  79. P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R. D. Hunt, and F. Doğan, The magnetic excitation spectrum and thermodynamics of high-Tc superconductors, Science 284(5418), 1344 (1999)

    ADS  Google Scholar 

  80. J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato, T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Electronic spectra and their relation to the (π, π) collective mode in high-Tc superconductors, Phys. Rev. Lett. 83(18), 3709 (1999)

    ADS  Google Scholar 

  81. Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4, Nature 406(6795), 486 (2000)

    ADS  Google Scholar 

  82. N. P. Ong, Y. Wang, S. Ono, Y. Ando, and S. Uchida, Vorticity and the Nernst effect in cuprate superconductors, Ann. Phys. 13(12), 9 (2004)

    Google Scholar 

  83. P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)

    ADS  Google Scholar 

  84. D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Antiferromagnetism in La2CuO4−y, Phys. Rev. Lett. 58(26), 2802 (1987)

    ADS  Google Scholar 

  85. T. S. Nunner, B. M. Anderson, A. Melikyan, and P. J. Hirschfeld, Dopant-modulated pair interaction in cuprate superconductors, Phys. Rev. Lett. 95(17), 177003 (2005)

    ADS  Google Scholar 

  86. A. C. Fang, L. Capriotti, D. J. Scalapino, S. A. Kivelson, N. Kaneko, M. Greven, and A. Kapitulnik, Gapinhomogeneity- induced electronic states in superconducting Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 96(1), 017007 (2006)

    ADS  Google Scholar 

  87. Y. He, T. S. Nunner, P. J. Hirschfeld, and H. P. Cheng, Local electronic structure of Bi2Sr2CaCu2O8 near oxygen dopants: A window on the high-Tc pairing mechanism, Phys. Rev. Lett. 96(19), 197002 (2006)

    ADS  Google Scholar 

  88. M. M. Maśka, Z. Sledz, K. Czajka, and M. Mierzejewski, Inhomogeneity-induced enhancement of the pairing interaction in cuprate superconductors, Phys. Rev. Lett. 99(14), 147006 (2007)

    ADS  Google Scholar 

  89. S. Petit and M. B. Lepetit, Real-space fluctuations of effective exchange integrals in high-Tc cuprates, Europhys. Lett. 87(6), 67005 (2009)

    ADS  Google Scholar 

  90. K. Foyevtsova, R. Valentı, and P. J. Hirschfeld, Effect of dopant atoms on local superexchange in cuprate superconductors: A perturbative treatment, Phys. Rev. B 79(14), 144424 (2009)

    ADS  Google Scholar 

  91. S. Johnston, F. Vernay, and T. P. Devereaux, Impact of an oxygen dopant in Bi2Sr2CaCu2O8+δ, Europhys. Lett. 86(3), 37007 (2009)

    ADS  Google Scholar 

  92. S. Okamoto and T. A. Maier, Microscopic inhomogeneity and superconducting properties of a two-dimensional Hubbard model for high-Tc cuprates, Phys. Rev. B 81(21), 214525 (2010)

    ADS  Google Scholar 

  93. G. Khaliullin, M. Mori, T. Tohyama, and S. Maekawa, Enhanced pairing correlations near oxygen dopants in cuprate superconductors, Phys. Rev. Lett. 105(25), 257005 (2010)

    ADS  Google Scholar 

  94. J. W. Loram, J. L. Tallon, and W. Y. Liang, Absence of gross static inhomogeneity in cuprate superconductors, Phys. Rev. B 69, 060502(R) (2004)

    ADS  Google Scholar 

  95. J. Bobroff, H. Alloul, S. Ouazi, P. Mendels, A. Mahajan, N. Blanchard, G. Collin, V. Guillen, and J. F. Marucco, Absence of static phase separation in the high Tc cuprate YBa2Cu3O6+y, Phys. Rev. Lett. 89(15), 157002 (2002)

    ADS  Google Scholar 

  96. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and M. R. Beasley, Giant proximity effect in cuprate superconductors, Phys. Rev. Lett. 93(15), 157002 (2004)

    ADS  Google Scholar 

  97. G. Alvarez, M. Mayr, A. Moreo, and E. Dagotto, Areas of superconductivity and giant proximity effects in underdoped cuprates, Phys. Rev. B 71(1), 014514 (2005)

    ADS  Google Scholar 

  98. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, No mixing of superconductivity and antiferromagnetism in a high-temperature superconductor, Nature 422(6934), 873 (2003)

    ADS  Google Scholar 

  99. E. Demler, A. J. Berlinsky, C. Kallin, G. B. Arnold, and M. R. Beasley, Proximity effect and Josephson coupling in the SO(5) theory of high-Tc superconductivity, Phys. Rev. Lett. 80(13), 2917 (1998)

    ADS  Google Scholar 

  100. E. Dagotto, Complexity in strongly correlated electronic systems, Science 309(5732), 257 (2005)

    ADS  Google Scholar 

  101. M. R. Norman and C. Pépin, The electronic nature of high temperature cuprate superconductors, Rep. Prog. Phys. 66(10), 1547 (2003)

    ADS  Google Scholar 

  102. A. Damascelli, A. Hussain, and Z. X. Shen, Angleresolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75(2), 473 (2003)

    ADS  Google Scholar 

  103. E. Dagotto, Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66(3), 763 (1994)

    ADS  Google Scholar 

  104. M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano, T. Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, Destruction of the Fermi surface in underdoped high-Tc superconductors, Nature 392(6672), 157 (1998)

    ADS  Google Scholar 

  105. X. J. Zhou, T. Yoshida, D. H. Lee, W. L. Yang, V. Brouet, F. Zhou, W. X. Ti, J. W. Xiong, Z. X. Zhao, T. Sasagawa, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. Hussain, and Z. X. Shen, Dichotomy between nodal and antinodal quasiparticles in underdoped (La2−xSrx)CuO4 superconductor, Phys. Rev. Lett. 92(18), 187001 (2004)

    ADS  Google Scholar 

  106. A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S. Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks, L. Ozyuzer, and J. C. Campuzano, Evolution of the pseudogap from Fermi arcs to the nodal liquid, Nat. Phys. 2(7), 447 (2006)

    Google Scholar 

  107. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J. B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor, Nature 447(7144), 565 (2007)

    ADS  Google Scholar 

  108. D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J. B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Electron pockets in the Fermi surface of hole-doped high-Tc superconductors, Nature 450(7169), 533 (2007)

    ADS  Google Scholar 

  109. E. A. Yelland, J. Singleton, C. H. Mielke, N. Harrison, F. F. Balakirev, B. Dabrowski, and J. R. Cooper, Quantum oscillations in the underdopedcuprate YBa2Cu4O8, Phys. Rev. Lett. 100(4), 047003 (2008)

    ADS  Google Scholar 

  110. A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois, M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud, D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E. Hussey, Small Fermi surface pockets in underdopedhigh temperature superconductors: Observation of Shubnikov-de Haas oscillations in YBa2Cu4O8, Phys. Rev. Lett. 100(4), 047004 (2008)

    ADS  Google Scholar 

  111. C. Jaudet, D. Vignolles, A. Audouard, J. Levallois, D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nardone, A. Zitouni, R. Liang, D. A. Bonn, W. N. Hardy, L. Taillefer, and C. Proust, de Haas-van Alphen oscillations in the underdoped high-temperature superconductor YBa2Cu3O6.5, Phys. Rev. Lett. 100(18), 187005 (2008)

    ADS  Google Scholar 

  112. S. R. Julian and M. R. Norman, Local pairs and small surfaces, Nature 447(7144), 537 (2007)

    ADS  Google Scholar 

  113. G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Superconducting properties of the Fe-based layered superconductor LaFeAsO0.9F0.1−δ, Phys. Rev. Lett. 101(5), 057007 (2008)

    ADS  Google Scholar 

  114. H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Superconductivity at 25 K in hole-doped (La1−xSrx)OFeAs, Europhys. Lett. 82(1), 17009 (2008)

    ADS  Google Scholar 

  115. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Superconductivity at 43 K in SmFeAsO1−xFx, Nature 453(7196), 761 (2008)

    ADS  Google Scholar 

  116. G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1−xFxFeAs, Phys. Rev. Lett. 100(24), 247002 (2008)

    ADS  Google Scholar 

  117. Z. A. Ren, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1−xFx]FeAs, Europhys. Lett. 82(5), 57002 (2008)

    ADS  Google Scholar 

  118. G. F. Chen, Z. Li, D. Wu, J. Dong, G. Li, W. Z. Hu, P. Zheng, J. L. Luo, and N. L. Wang, Element substitution effect in transition metal oxypnictide Re(O1−xFx)TAs (Re = rare earth, T = transition metal), Chin. Phys. Lett. 25(6), 2235 (2008)

    ADS  Google Scholar 

  119. M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Model for the magnetic order and pairing channels in Fe pnictide superconductors, Phys. Rev. Lett. 101(23), 237004 (2008)

    ADS  Google Scholar 

  120. A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure, Phys. Rev. B 79(13), 134502 (2009)

    ADS  Google Scholar 

  121. K. Nakayama, T. Sato, P. Richard, Y. M. Xu, Y. Sekiba, S. Souma, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Superconducting gap symmetry of Ba0.6K0.4Fe2As2 studied by angle-resolved photoemission spectroscopy, Europhys. Lett. 85(6), 67002 (2009)

    ADS  Google Scholar 

  122. H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2, Europhys. Lett. 83(4), 47001 (2008)

    ADS  Google Scholar 

  123. L. Zhao, H. Y. Liu, W. T. Zhang, J. Q. Meng, X. W. Jia, G. D. Liu, X. L. Dong, G. F. Chen, J. L. Luo, N. L. Wang, W. Lu, G. L. Wang, Y. Zhou, Y. Zhu, X. Y. Wang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Multiple nodeless superconducting gaps in (Ba0.6K0.4)Fe2As2 superconductor from angle resolved photoemission spectroscopy, Chin. Phys. Lett. 25(12), 4402 (2008)

    ADS  Google Scholar 

  124. K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z. H. Liu, P. Richard, T. Sato, J. B. He, D. M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S. C. Wang, Unconventional anisotropic s-wave superconducting gaps of LiFeAs ironpnictide superconductor, Phys. Rev. Lett. 108(3), 037002 (2012)

    ADS  Google Scholar 

  125. Z. H. Liu, P. Richard, K. Nakayama, G. F. Chen, S. Dong, J. B. He, D. M. Wang, T. L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi, T. Qian, Y. Huang, N. Xu, Y. Shi, H. Ding, and S. C. Wang, Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy, Phys. Rev. B 84(6), 064519 (2011)

    ADS  Google Scholar 

  126. J. Hu and N. Hao, S4 symmetric microscopic model for iron-based superconductors, Phys. Rev. X 2(2), 021009 (2012)

    Google Scholar 

  127. P. W. Anderson, When the electron falls apart, Phys. Today 50(10), 42 (1997)

    Google Scholar 

  128. S. C. Zhang, A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism, Science 275(5303), 1089 (1997)

    MathSciNet  MATH  Google Scholar 

  129. There also is the U(1) generator of charge density waves in our full U(4) ⊃ U(1)×SU(4) algebra that does not appear in the Zhang SO(5) algebra.

  130. S. C. Zhang, J. P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, Projected SO(5) models, Phys. Rev. B 60(18), 13070 (1999)

    ADS  Google Scholar 

  131. The broken particle number symmetry can be restored by particle-number projection, but in practice this procedure may not be necessary as we are dealing with a system having a very large number of fermions.

Download references

Acknowledgements

We would like to thank Pengcheng Dai, Elbio Dagotto, Adriana Moreo, Takeshi Egami, John Quinn, Hai-Hu Wen, and Wei Ku for discussions and advice that have greatly enhanced our understanding of strongly correlated electron systems. This work was partially supported by the National Key Program for S&T Research and Development (Grant No. 2016YFA0400501). L. W. acknowledges grant support from the Basque Government (Grant No. IT986-16) and PGC2018-101355-BI00 (MCIU/AEI/FEDER, UE). This work was partially supported by LightCone Interactive LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Guidry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidry, M., Sun, Y., Wu, LA. et al. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity. Front. Phys. 15, 43301 (2020). https://doi.org/10.1007/s11467-020-0957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0957-5

Keywords

Navigation