Skip to main content
Log in

Anisotropic evolution of energy gap in Bi2212 superconductor

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, The pseudogap in hightemperature superconductors: An experimental survey, Rep. Prog. Phys. 62(1), 61 (1999)

    Article  ADS  Google Scholar 

  2. Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)

    Article  Google Scholar 

  3. L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G. D. Gu, and N. P. Ong, Diamagnetism and Cooper pairing above T c in cuprates, Phys. Rev. B 81(5), 054510 (2010)

    Article  ADS  Google Scholar 

  4. J. Tahir-Kheli and W. A. Goddard III, Origin of the pseudogap in high-temperature cuprate superconductors, J. Phys. Chem. Lett. 2, 2326 (2011)

    Article  Google Scholar 

  5. C. V. Parker, P. Aynajian, E. H. da Silva Neto, A. Pushp, S. Ono, J. Wen, Z. Xu, G. Gu, and A. Yazdani, Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi2Sr2CaCu2O8+x , Nature 468(7324), 677 (2010)

    Article  ADS  Google Scholar 

  6. P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)

    Article  ADS  Google Scholar 

  7. G. Zhao, The pairing mechanism of high-temperature superconductivity: Experimental constraints, Phys. Scr. 83(3), 038302 (2011)

    Article  ADS  Google Scholar 

  8. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)

    Article  ADS  Google Scholar 

  9. E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87(2), 457 (2015)

    Article  ADS  Google Scholar 

  10. R. Szczesniak, The isotope coefficient of the pseudogap in high-superconductors, Phys. Lett. A 336(4–5), 402 (2005)

    Article  ADS  MATH  Google Scholar 

  11. R. Szczesniak, The selected thermodynamic properties of the strong-coupled superconductors in the van Hove scenario, Solid State Commun. 138(7), 347 (2006)

    Article  ADS  Google Scholar 

  12. W. Kumala and R. Gonczarek, Solutions of the energy gap equation for D-wave paired systems, Phys. Status Solidi B 242(5), 1075 (2005)

    Article  ADS  Google Scholar 

  13. M. Gladysiewicz-Kudrawiec, R. Gonczarek, and M. Krzyzosiak, Thermodynamic properties of a high-Tc superconductor in the extended Van Hove Scenario, Physica B 359–361, 572 (2005)

    Article  Google Scholar 

  14. M. Krzyzosiak, R. Gonczarek, A. Gonczarek, and L. Jacak, Applications of the confromal transformation method in studies of composed superconducting systems, Front. Phys. 11, 117407 (2016)

    Article  MATH  Google Scholar 

  15. H. Y. Choi, C. M. Varma, and X. Zhou, Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES, Front. Phys. 6(4), 440 (2012)

    Article  Google Scholar 

  16. P. Tarasewicz, The intra-and interband phonon-electron potentials in a two-band model of interacting lattice fermions, J. Supercond. Nov. Magn. 28(8), 2307 (2015)

    Article  Google Scholar 

  17. P. Tarasewicz, Fermion quartets in a two-band model of superconductivity, Physica C 506, 12 (2014)

    Article  ADS  Google Scholar 

  18. R. Szczesniak, Pairing mechanism for the high-Tc superconductivity: Symmetries and thermodynamic properties, PLoS ONE 7(4), e31873 (2012)

    Article  ADS  Google Scholar 

  19. R. Szczesniak and A. P. Durajski, Anisotropy of the gap parameter in the hole-doped cuprates, Supercond. Sci. Technol. 27(12), 125004 (2014)

    Article  ADS  Google Scholar 

  20. R. Szczesniak and A. P. Durajski, On the ratio of the energy gap amplitude to the critical temperature for cuprates, Acta Phys. Pol. A 126(4A), A92 (2014)

    Article  Google Scholar 

  21. R. Szczesniak, M. W. Jarosik, and A. M. Duda, The correlation between the energy gap and the pseudogap temperature in cuprates: The YCBCZO and LSHCO Case, Adv. Condens. Matter Phys. 2015, 969564 (2015)

    Article  Google Scholar 

  22. R. Szczesniak, A. P. Durajski, and A. M. Duda, Analysis of the high-temperature superconducting state in cuprates: The Eliashberg approach, arXiv: 1503.06932 (2015)

    Google Scholar 

  23. I. M. Vishik, W. S. Lee, R. H. He, M. Hashimoto, Z. Hussain, T. P. Devereaux, and Z. X. Shen, ARPES studies of cuprateFermiology: superconductivity, pseudogap and quasiparticle dynamics, New J. Phys. 12(10), 105008 (2010)

    Article  ADS  Google Scholar 

  24. I. M. Vishik, M. Hashimoto, R. H. He, W. S. Lee, F. Schmitt, D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S. Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, and Z.X. Shen, Phase competition in trisected superconducting dome, Proc. Natl. Acad. Sci. USA 109(45), 18332 (2012)

    Article  ADS  Google Scholar 

  25. T. Tohyama and S. Maekawa, Angle-resolved photoemission in high Tc cuprates from theoretical viewpoints, Supercond. Sci. Technol. 13(4), R17 (2000)

    Article  ADS  Google Scholar 

  26. C. Kim, P. J. White, Z. X. Shen, T. Tohyama, Y. Shibata, S. Maekawa, B. O. Wells, Y. J. Kim, R. J. Birgeneau, and M. A. Kastner, Systematics of the photoemission spectral function of cuprates: Insulators and hole-and electron-doped superconductors, Phys. Rev. Lett. 80(19), 4245 (1998)

    Article  ADS  Google Scholar 

  27. H. Fröhlich, On the theory of superconductivity: The one-dimensional case, Proc. R. Soc. Lond. A Math. Phys. Sci. 223(1154), 296 (1954)

    Article  ADS  MATH  Google Scholar 

  28. R. Szczesniak and A. P. Durajski, The energy gap in the (Hg1-x Snx)Ba2Ca2Cu3O8+y superconductor, J. Supercond. Nov. Magn. 27(6), 1363 (2014)

    Article  Google Scholar 

  29. R. M. Dipasupil, M. Oda, N. Momono, and M. Ido, Energy gap evolution in the tunneling spectra of Bi2Sr2CaCu2O8+δ , J. Phys. Soc. Jpn. 71(6), 1535 (2002)

    Article  ADS  Google Scholar 

  30. N. Miyakawa, J. F. Zasadzinski, L. Ozyuzer, P. Guptasarma, D. G. Hinks, C. Kendziora, and K. E. Gray, Predominantly superconducting origin of large energy gaps in underdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy, Phys. Rev. Lett. 83(5), 1018 (1999)

    Article  ADS  Google Scholar 

  31. L. Ozyuzer, J. Zasadzinski, K. Gray, D. Hinks, and N. Miyakawa, Probing the phase diagram of Bi2Sr2CaCu2O8+δ with tunneling spectroscopy, IEEE Trans. Appl. Supercond. 13(2), 893 (2003)

    Article  Google Scholar 

  32. C. Renner, B. Revaz, J. Y. Genoud, K. Kadowaki, and O. Fischer, Pseudogap precursor of the superconducting gap in under-and overdoped Bi2Sr2CaCu2O8+δ , Phys. Rev. Lett. 80(1), 149 (1998)

    Article  ADS  Google Scholar 

  33. M. Oda, K. Hoya, R. Kubota, C. Manabe, N. Momono, T. Nakano, and M. Ido, Strong pairing interactions in the underdoped region of Bi2Sr2CaCu2O8+δ , Physica C 281(2–3), 135 (1997)

    Article  ADS  Google Scholar 

  34. H. Ding, J. Campuzano, M. Norman, M. Randeria, T. Yokoya, T. Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P. Guptasarma, and D. G. Hinks, ARPES study of the superconducting gap and pseudogap in Bi2Sr2CaCu2O8+x , J. Phys. Chem. Solids 59(10–12), 1888 (1998)

    Article  ADS  Google Scholar 

  35. H. Raffy, V. Toma, C. Murrills, and Z. Z. Li, c-axis resistivity of Bi2Sr2CaCu2Oy thin films at various oxygen doping: Phase diagram and scaling law, Physica C 460–462, 851 (2007)

    Article  Google Scholar 

  36. M. Hashimoto, I. M. Vishik, R. H. He, T. P. Devereaux, and Z. X. Shen, Energy gaps in high-transitiontemperature cuprate superconductors, Nat. Phys. 10(7), 483(2014)

    Article  Google Scholar 

  37. J. Zhao, U. Chatterjee, D. Ai, D. G. Hinks, H. Zheng, G. D. Gu, J. P. Castellan, S. Rosenkranz, H. Claus, M. R. Norman, M. Randeria, and J. C. Campuzano, Universal features in the photoemission spectroscopy of high-temperature superconductors, Proc. Natl. Acad. Sci. USA 110(44), 17774 (2013)

    Article  Google Scholar 

  38. S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71(6), 062501 (2008)

    Article  ADS  Google Scholar 

  39. R. Szczesniak and A. P. Durajski, Description of hightemperature superconducting state in BSLCO compound, J. Supercond. Nov. Magn. 28(1), 19 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Durajski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durajski, A.P. Anisotropic evolution of energy gap in Bi2212 superconductor. Front. Phys. 11, 117408 (2016). https://doi.org/10.1007/s11467-016-0595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0595-0

Keywords

Navigation